Как находить реакции опор сопромат. Как определить реакцию опоры сопромат. Определение опорных реакций. Решение задач. Контрольные вопросы и задания

Балками будем называть прямолинейные стержни, работающие на изгиб. В сопротивлении материалов термин «балка» значительно шире, чем в обычном употреблении этого слова: с точки зрения расчета на прочность, жесткость и устойчивость балкой является не только строительная балка, но также и вал, болт, ось железно­дорожного вагона, зуб шестерни и т. д.

Вначале ограничимся построением эпюр для простейшего случая изгиба балок, при котором все заданные нагрузки лежат в одной плоскости, называемой силовой (на рис. 4, а - плоскость П), при­чем эта плоскость совпадает с одной из главных плоскостей балки. Такой слу­чай будем называть плоским изгибом .

На расчетной схеме балку принято заменять ее осью (рис. 4, б). При этом все нагрузки, естественно, должны

Рис 4 быть приведены к оси балки и силовая плос­кость будет совпадать с плоскостью чер­тежа.

Как правило, балки имеют опорные устройства - опоры. Для расчета же их схематизи­руют в виде трех основных типов опор:

а) шарнирно-подвижная опора (рис. 5, а), в которой может возникать только одна составляющая реакции - , направленная вдоль опорного стерженька;

б) шарнирно-неподвижная опора (рис. 5, б), в которой могут возникать две составляющие - вертикальная реакция
и гори­зонтальная реакция

в) защемление (иначе жесткое защемление или заделка), где могут быть три составляющие - вертикальная
и горизонтальная
реакции и опорный момент Ма (рис. 5, в).

Все реакции и моменты считаются приложенными в точке А - центре тяжести опорного сечения.

Балка, показанная на рис. 6, с, называется простой , или однопролетной , или двухопорной , а расстояние l между опорами - пролетом .

Консолью называется балка, защемленная одним концом и не имеющая других опор (рис. 4, б), или часть балки, свешивающаяся за опоры (часть ВС на рис. 6, б; части АС и BD на рис. 6, е). Бан­ки, имеющие свешивающиеся части, называют консольными (рис. 6, б, в).

Для плоской системы сил можно составить три уравнения статики для определения неизвестных реакций.

Поэтому балка будет статически определимой, если число неизвестных опор­ных реакций не превышает трех; в противном случае балка стати­чески неопределима. Очевидно, что балки, изображенные на рис. 4 и 6, статически определимы.

Балка, изображенная на рис. 7, а , называется неразрезной и яв­ляется статически неопределимой, поскольку имеет пять неизвестных опорных реакций: три в опоре А и по одной в опорах В и С.

Поставив в сечениях балки шарниры, например в точках D и Е (рис. 7, б), получим статически определимую шарнирную балку, ибо каждый такой промежуточный шарнир к трем основным уравнениям статики прибавляет одно дополнительное уравнение: сумма моментов относительно центра шарнира от всех сил, расположен­ных по одну сторону от него, равна нулю .

Построение эпюр для статически неопределимых балок требует умения вычислять деформации, а поэтому ограничимся пока исклю­чительно статически определимыми балками.

Способы определения опорных реакций изучают в курсе теоре­тической механики. Поэтому здесь остановимся только на некоторых практических вопросах. Для этого рассмотрим простую балку (рис. 6, а).

1. Опоры обычно обозначают буквами А и В. Три неизвестные реакции находят из следующих уравнений равновесия:

а) сумма проекций всех сил на ось балки равна нулю:
откуда находят

б) сумма моментов всех сил относительно опорного шарнира А равна нулю:
откуда находят
.

в) сумма моментов всех сил относительно опорного шарнира В равна нулю:

откуда находят
.

2. Для контроля можно использовать или условие равенства нулю суммы проекций на вертикаль:

или условие равенства нулю суммы моментов относительно какой-либо точки С, отличной от А и В, т. е.

У

Условием
пользоваться проще, но оно дает надежную про­верку только в тех случаях, когда к балке не приложены сосредо­точенные моменты.

3. Перед составлением уравнений равновесия нужно выбрать (вообще говоря, произвольно) направления реакций и изобразить их на рисунке. Если в результате вычислений какая-либо реакция получается отрицательной, нужно изменить на рисунке ее направ­ление на обратное и в дальнейшем считать эту реакцию положи­тельной,

5. Если на балку действует распре деленная нагрузка, то для определения реакций ее заменяют равнодействующей, которая равна площади эпюры нагрузки и приложена в центре тя­жести этой эпюры.

Пример 5. Вычислить опорные реакции для балки, показанной на рис. 8.

Прежде всего находим равнодействующие Р 1 и Р 2 нагрузок, распределенных на участках АС н СВ:

;
.

Сила Р 1 приложена в центре тяжести прямоугольника, а Р 2 - в центре тяжести треугольника. Находим реакции:

Балки предназначены для восприятия поперечных нагрузок. По способу приложения нагрузки делятся на сосредоточенные (действуют на точку) и распределенные (действуют на значительную площадь или длину).

q - интенсивность нагрузки, кн/м

G = q L – равнодействующая распределенной нагрузки

Балки имеют опорные устройства для сопряжения их с другими элементами и передачи на них усилий. Применяются следующие виды опор:

· Шарнирно-подвижная

Эта опора допускает поворот вокруг оси и линейное перемещение параллельно опорной плоскости. Реакция направлена перпендикулярно опорной поверхности.

· Шарнирно-неподвижная

Эта опора допускает поворот вокруг оси, но не допускает никаких линейных перемещений. Направление и значение опорной реакции неизвестно, поэтому заменяется двумя составляющими R A у и R A х вдоль осей координат.

· Жесткая заделка (защемление)

Опора не допускает перемещений и поворотов. Неизвестны не только направление и значение опорной реакции, но и точка её приложения. Поэтому заделку заменяют двумя составляющими R A у, R A х и моментом М А. Для определения этих неизвестных удобно использовать систему уравнений.

∑ m А (F к)= 0

Для контроля правильности решения используется дополнительное уравнение моментов относительно любой точки на консольной балке, например точка В ∑ m В (F к)= 0

Пример. Определить опорные реакции жесткой заделки консольной балки длиной 8 метров, на конце которой подвешен груз Р = 1 кн. Сила тяжести балки G = 0,4 кн приложена посередине балки.

Освобождаем балку от связей, т.е отбрасываем заделку и заменяем её действие реакциями. Выбираем координатные оси и составляем уравнения равновесия.

∑ F kx = 0 R A х = 0

∑ F k у = 0 R A у – G – P = 0

∑ m А (F к)= 0 - M A + G L / 2 + P L = 0

Решая уравнения, получим R A у = G + P = 0,4 + 1 = 1,4 кн

M A = G L / 2 + P L = 0,4 . 4 + 1 . 8 = 9,6 кн. м

Проверяем полученные значения реакций:

∑ m в (F к)= 0 - M A + R A у L - G L / 2 = 0

9,6 + 1,4 . 8 – 0,4 . 4 = 0

11,2 + 11,2 = 0 реакции найдены верно.

Для балок расположенных на двух шарнирных опорах удобнее определять опорные реакции по 2 системе уравнений, поскольку момент силы на опоре равен нулю и в уравнении остается одна неизвестная сила.

∑ m А (F к)= 0

∑ m В (F k)= 0

Для контроля правильности решения используется дополнительное уравнение ∑ F k у = 0


1) Освобождаем балку от опор, а их действие заменяем опорными реакциями;

Рассмотрим несколько примеров.

Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).

Решение. Реакцию заделки представляем в виде двух сил Az и Ay , направленных, как указано на чертеже, и реактивного момента MA .

Составляем уравнение равновесия балки.

1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.

2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз, приложенной посредине участка aз:

Ay - F1 - qaз = 0,

Ay = F1 + qaз.

Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.

3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:


Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.

Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.

Решение. Так как горизонтальная нагрузка отсутствует, то Az = 0

Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 - 40 - 40 + 55 = 0, т.е. тождество.

Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).

Решение.

т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.

Полезные ресурсы по теме "Определение опорных реакций"

1. , которая выдаст расписанное решение любой балки. .
Кроме построения эпюр эта программа так же подбирает профиль сечения по условию прочности на изгиб, считает прогибы и углы поворота в балке.

2. , которая строит 4 вида эпюр и рассчитывает реакции для любых балок (даже для статически неопределимых).

5 семестр. Основы функционирования машин и их элементов в системе промышленного сервиса

Теоретическая механика это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.

Раздел 1.Статика- это раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Сила - это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия. Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения. Сила изображается вектором.

Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело.Одним из основных положений механики является пpuнцип освобождаемости т тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, на которое кроме задаваемых сил действуют реакции связей.

Задача 1. Определение реакций опор балки под действием плоской произвольной системы сил

Определить реакции R A и R B опор балки, размеры и нагрузки которой показаны на рис. 1,а (поменять значения F и М).


Решение. 1. Составление расчетной схемы . Объект равновесия – балка АС . Активные силы: F = 3 к H , пара сил с M = 4 к H ∙м = 1 кН/м , которую заменяем одной сосредоточенной силой R q = q 1= 13 = 3 к H ; приложенной к точке D на расстоянии 1,5 м от края консоли. Применяя принцип освобождаемости от связей изобразим в точках А и В реакции. На балку действует плоская произвольная система сил, в которой три неизвестных реакции

и .

Ось х направим вдоль горизонтальной оси балки вправо, а ось у - вертикально вверх (рис.1,а).

2. Условия равновесия:


.

3. Составление уравнений равновесия:

4. Определение искомых величин, проверка правильности решения и анализ полученных результатов .

Решая систему уравнений (1 – 3), определяем неизвестные реакции

из (2): кН .

Величина реакции R A х имеет отрицательный знак, значит направлена не так, как показано на рисунке, а в противоположную сторону.

Для проверки правильности решения составим уравнение суммы моментов относительно точки Е.

Подставив в это уравнение значения входящих в него величин, получим:

0,58 ∙ 1 – 4 + 5,02 ∙ 3 – 3 ∙ 3,5 = 0.

Уравнение удовлетворяется тождественно, что подтверждает правильность решения задачи.

Задача 2.Определение реакций опор составной конструкции

Конструкция состоит из двух тел, соединенных шарнирно в точке С . Тело АС закреплено с помощью заделки, тело ВС имеет шарнирно-подвижную (скользящую) опору (рис. 1). На тела системы действуют распределенная по линейному закону сила с максималь­ной интенсивностью q тах = 2 кН/м , сила F = 4 кН под углом α = 30 o и пара сил с моментом М = 3 кНм . Геомет­рические размеры указаны в метрах. Определить реакции опор и усилие, пе­редаваемое через шарнир. Вес элемен­тов конструкции не учитывать.

Рис. 1 Рис. 2

Решение .Если рассмотреть рав­новесие всей конструкции в целом, учитывая, что реакция заделки состо­ит из силы неизвестного направления и пары, а реакция скользящей опоры перпендикулярна опорной поверхно­сти, то расчетная схема будет иметь вид, представленный на рис. 2.

Здесь равнодействующая распреде­ленной нагрузки


расположена на расстоянии двух метров (1/3 длины AD ) от точки А ; М А - неизвестный момент заделки.

В данной системе сил четыре неизвестных реакции (Х А , Y A , M A , R B ), и их нельзя определить из трех уравне­ний равновесия плоской произвольной системы сил.

Поэтому расчленим систему на отдельные тела по шарниру (рис.3).

Силу, приложенную в шарнире, следует при этом учи­тывать лишь на одном теле (любом из них). Уравнения для тела ВС :



Отсюда Х С = – 1 кН ; У С = 0; R B = 1 кН .

Уравнения для тела АС :

Здесь при вычислении момента силы F относительно точки А использована теорема Вариньона: сила F разло­жена на составляющие F cos α и F sin α и определена сум­ма их моментов.

Из последней системы уравнений находим:

Х А = – 1,54 кН ; У А = 2 кН ; М А = – 10,8 кНм .

Для проверки полученного решения составим уравнение моментов сил для всей конструкции относительно точки D (рис. 2):

Вывод: проверка показала, что модули реакций определены верно. Знак минус у реакций говорит о том, что реально они направлены в противоположные стороны.

Способы определения опорных реакций изучаются в курсе теоретической механики. Остановимся только практических вопросах методики вычисления опорных реакций, в частности для шарнирно опертой балки с консолью (рис. 7.4).

Нужно найти реакции: , и . Направления реакций выбираем произвольно. Направим обе вертикальные реакции вверх, а горизонтальную реакцию – влево.

Нахождение и проверка опорных реакций в шарнирной опоре

Для вычисления значений реакций опор составим уравнения статики:

Сумма проекций всех сил (активных и реактивных) на ось z равна нулю: .

Поскольку на балку действуют только вертикальные нагрузки (перпендикулярные к оси балки), то из этого уравнения находим: горизонтальная реакция неподвижной .

Сумма моментов всех сил относительно опоры А равна нулю: .

Для момента силы: считаем момент силы положительным, если он вращает балку относительно точки против хода часовой стрелки.

Необходимо найти равнодействующую распределенной . Распределенная погонная нагрузка равна площади распределенной нагрузки и приложена в этой эпюры (посредине участка длиной ).

Сумма моментов всех сил относительно опоры B равна нулю: .

Знак «минус» в результате говорит: предварительное направление опорной реакции было выбрано неверно. Меняем направление этой опорной реакции на противоположное (см. рис. 7.4) и про знак «минус» забываем.

Проверка опорных реакций

Сумма проекций всех сил на ось y должна быть равна нулю: .

Силы, направление которых совпадает с положительным направлением оси y, проектируются на нее со знаком «плюс».

Балки предназначены для восприятия поперечных нагрузок. По способу приложения нагрузки делятся на сосредоточенные (действуют на точку) и распределенные (действуют на значительную площадь или длину).

q - интенсивность нагрузки, кн/м

G = q L – равнодействующая распределенной нагрузки

Балки имеют опорные устройства для сопряжения их с другими элементами и передачи на них усилий. Применяются следующие виды опор:

· Шарнирно-подвижная

Эта опора допускает поворот вокруг оси и линейное перемещение параллельно опорной плоскости. Реакция направлена перпендикулярно опорной поверхности.

· Шарнирно-неподвижная

Эта опора допускает поворот вокруг оси, но не допускает никаких линейных перемещений. Направление и значение опорной реакции неизвестно, поэтому заменяется двумя составляющими R A у и R A х вдоль осей координат.

· Жесткая заделка (защемление)

Опора не допускает перемещений и поворотов. Неизвестны не только направление и значение опорной реакции, но и точка её приложения. Поэтому заделку заменяют двумя составляющими R A у, R A х и моментом М А. Для определения этих неизвестных удобно использовать систему уравнений.

∑ m А (F к)= 0

Для контроля правильности решения используется дополнительное уравнение моментов относительно любой точки на консольной балке, например точка В ∑ m В (F к)= 0

Пример. Определить опорные реакции жесткой заделки консольной балки длиной 8 метров, на конце которой подвешен груз Р = 1 кн. Сила тяжести балки G = 0,4 кн приложена посередине балки.

Освобождаем балку от связей, т.е отбрасываем заделку и заменяем её действие реакциями. Выбираем координатные оси и составляем уравнения равновесия.

∑ F kx = 0 R A х = 0

∑ F k у = 0 R A у – G – P = 0

∑ m А (F к)= 0 - M A + G L / 2 + P L = 0

Решая уравнения, получим R A у = G + P = 0,4 + 1 = 1,4 кн

M A = G L / 2 + P L = 0,4 . 4 + 1 . 8 = 9,6 кн. м

Проверяем полученные значения реакций:

∑ m в (F к)= 0 - M A + R A у L - G L / 2 = 0

9,6 + 1,4 . 8 – 0,4 . 4 = 0

11,2 + 11,2 = 0 реакции найдены верно.

Для балок расположенных на двух шарнирных опорах удобнее определять опорные реакции по 2 системе уравнений, поскольку момент силы на опоре равен нулю и в уравнении остается одна неизвестная сила.

∑ m А (F к)= 0

∑ m В (F k)= 0

Для контроля правильности решения используется дополнительное уравнение ∑ F k у = 0


1) Освобождаем балку от опор, а их действие заменяем опорными реакциями;

Рассмотрим несколько примеров.

Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).

Решение. Реакцию заделки представляем в виде двух сил Az и Ay , направленных, как указано на чертеже, и реактивного момента MA .

Составляем уравнение равновесия балки.

1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.

2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз, приложенной посредине участка aз:

Ay - F1 - qaз = 0,

Ay = F1 + qaз.

Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.

3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:


Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.

Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.

Решение. Так как горизонтальная нагрузка отсутствует, то Az = 0

Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 - 40 - 40 + 55 = 0, т.е. тождество.

Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).

Решение.

т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.

Полезные ресурсы по теме "Определение опорных реакций"

1. , которая выдаст расписанное решение любой балки. .
Кроме построения эпюр эта программа так же подбирает профиль сечения по условию прочности на изгиб, считает прогибы и углы поворота в балке.

2. , которая строит 4 вида эпюр и рассчитывает реакции для любых балок (даже для статически неопределимых).

5 семестр. Основы функционирования машин и их элементов в системе промышленного сервиса

Теоретическая механика это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.

Раздел 1.Статика- это раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Сила - это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия. Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения. Сила изображается вектором.

Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело.Одним из основных положений механики является пpuнцип освобождаемости т тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, на которое кроме задаваемых сил действуют реакции связей.

Задача 1. Определение реакций опор балки под действием плоской произвольной системы сил

Определить реакции R A и R B опор балки, размеры и нагрузки которой показаны на рис. 1,а (поменять значения F и М).


Решение. 1. Составление расчетной схемы . Объект равновесия – балка АС . Активные силы: F = 3 к H , пара сил с M = 4 к H ∙м = 1 кН/м , которую заменяем одной сосредоточенной силой R q = q 1= 13 = 3 к H ; приложенной к точке D на расстоянии 1,5 м от края консоли. Применяя принцип освобождаемости от связей изобразим в точках А и В реакции. На балку действует плоская произвольная система сил, в которой три неизвестных реакции

и .

Ось х направим вдоль горизонтальной оси балки вправо, а ось у - вертикально вверх (рис.1,а).

2. Условия равновесия:


.

3. Составление уравнений равновесия:

4. Определение искомых величин, проверка правильности решения и анализ полученных результатов .

Решая систему уравнений (1 – 3), определяем неизвестные реакции

из (2): кН .

Величина реакции R A х имеет отрицательный знак, значит направлена не так, как показано на рисунке, а в противоположную сторону.

Для проверки правильности решения составим уравнение суммы моментов относительно точки Е.

Подставив в это уравнение значения входящих в него величин, получим:

0,58 ∙ 1 – 4 + 5,02 ∙ 3 – 3 ∙ 3,5 = 0.

Уравнение удовлетворяется тождественно, что подтверждает правильность решения задачи.

Задача 2.Определение реакций опор составной конструкции

Конструкция состоит из двух тел, соединенных шарнирно в точке С . Тело АС закреплено с помощью заделки, тело ВС имеет шарнирно-подвижную (скользящую) опору (рис. 1). На тела системы действуют распределенная по линейному закону сила с максималь­ной интенсивностью q тах = 2 кН/м , сила F = 4 кН под углом α = 30 o и пара сил с моментом М = 3 кНм . Геомет­рические размеры указаны в метрах. Определить реакции опор и усилие, пе­редаваемое через шарнир. Вес элемен­тов конструкции не учитывать.

Рис. 1 Рис. 2

Решение .Если рассмотреть рав­новесие всей конструкции в целом, учитывая, что реакция заделки состо­ит из силы неизвестного направления и пары, а реакция скользящей опоры перпендикулярна опорной поверхно­сти, то расчетная схема будет иметь вид, представленный на рис. 2.

Здесь равнодействующая распреде­ленной нагрузки


расположена на расстоянии двух метров (1/3 длины AD ) от точки А ; М А - неизвестный момент заделки.

В данной системе сил четыре неизвестных реакции (Х А , Y A , M A , R B ), и их нельзя определить из трех уравне­ний равновесия плоской произвольной системы сил.

Поэтому расчленим систему на отдельные тела по шарниру (рис.3).

Силу, приложенную в шарнире, следует при этом учи­тывать лишь на одном теле (любом из них). Уравнения для тела ВС :



Отсюда Х С = – 1 кН ; У С = 0; R B = 1 кН .

Уравнения для тела АС :

Здесь при вычислении момента силы F относительно точки А использована теорема Вариньона: сила F разло­жена на составляющие F cos α и F sin α и определена сум­ма их моментов.

Из последней системы уравнений находим:

Х А = – 1,54 кН ; У А = 2 кН ; М А = – 10,8 кНм .

Для проверки полученного решения составим уравнение моментов сил для всей конструкции относительно точки D (рис. 2):

Вывод: проверка показала, что модули реакций определены верно. Знак минус у реакций говорит о том, что реально они направлены в противоположные стороны.

Способы определения опорных реакций изучаются в курсе теоретической механики. Остановимся только практических вопросах методики вычисления опорных реакций, в частности для шарнирно опертой балки с консолью (рис. 7.4).

Нужно найти реакции: , и . Направления реакций выбираем произвольно. Направим обе вертикальные реакции вверх, а горизонтальную реакцию – влево.

Нахождение и проверка опорных реакций в шарнирной опоре

Для вычисления значений реакций опор составим уравнения статики:

Сумма проекций всех сил (активных и реактивных) на ось z равна нулю: .

Поскольку на балку действуют только вертикальные нагрузки (перпендикулярные к оси балки), то из этого уравнения находим: горизонтальная реакция неподвижной .

Сумма моментов всех сил относительно опоры А равна нулю: .

Для момента силы: считаем момент силы положительным, если он вращает балку относительно точки против хода часовой стрелки.

Необходимо найти равнодействующую распределенной . Распределенная погонная нагрузка равна площади распределенной нагрузки и приложена в этой эпюры (посредине участка длиной ).

Сумма моментов всех сил относительно опоры B равна нулю: .

Знак «минус» в результате говорит: предварительное направление опорной реакции было выбрано неверно. Меняем направление этой опорной реакции на противоположное (см. рис. 7.4) и про знак «минус» забываем.

Проверка опорных реакций

Сумма проекций всех сил на ось y должна быть равна нулю: .

Силы, направление которых совпадает с положительным направлением оси y, проектируются на нее со знаком «плюс».