Особенности применения и выбора измерительных трансформаторов тока. Измерительные трансформаторы тока — назначение, устройство, виды конструкций Где устанавливаются трансформаторы тока

Трансформатором тока (ТТ) называется трансформатор, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно его на угол, близкий к нулю.

Первичная обмотка трансформатора тока включена в цепь последовательно (в рассечку токопровода), а вторичная обмотка замыкается на некоторую нагрузку (измерительные приборы и реле), обеспечивая прохождение по ней тока, пропорционального току первичной обмотке.

В трансформаторах тока высокого напряжения первичная обмотка изолирована от вторичной обмотки (от земли) на полное рабочее напряжение. Один конец вторичной обмотки обычно заземляется. Поэтому она имеет потенциал, близкий к потенциалу земли.

Трансформаторы тока по своему назначению разделяются на трансформаторы тока для измерений и трансформаторы тока для защиты. В некоторых случаях эти функции совмещают в одном трансформаторе тока.

Трансформаторы тока для измерений предназначаются для передачи измерительной информации измерительным приборам. Они устанавливаются в цепях высокого напряжения или в цепях с большим током, то есть в цепях, в которых не возможно непосредственное включение измерительных приборов. Ко вторичной обмотке ТТ для измерений подключаются амперметры, токовые обмотки ваттметров, счетчиков и аналогичных приборов. Таким образом, трансформатор тока для измерений обеспечивает:
1) преобразование переменного тока любого значения в переменный ток, приемлемый по значению для непосредственного измерения с помощью стандартных измерительных приборов;
2) изолирование измерительных приборов, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Трансформаторы тока для защиты предназначаются для передачи измерительной информации в устройства защиты и управления. Соответственно этому трансформатор тока для защиты обеспечивает:
1) преобразование переменного тока любого значения в переменный ток, приемлемый по значению для питания устройств релейной защиты;
2) изолирование реле, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Применение трансформаторов тока в установках высокого напряжения является необходимым даже в тех случаях, когда уменьшение тока для измерительных приборов или реле не требуется.

Классификация трансформаторов тока

Все трансформаторы тока – и для измерений, и для защиты – можно классифицировать по следующим основным признакам.

По роду установки: трансформаторы тока для работы на открытом воздухе (категория размещения 1 по ГОСТ 15150-69); для работы в закрытых помещениях (по ГОСТ 15150-69); для встраивания во внутренние полости электрооборудования (категория в соответствии с таблицей 1); для специальных установок (в шахтах, на судах, электровозах и так далее).

Таблица 1

По способу установки: проходные трансформаторы тока, предназначенные для использования в качестве ввода и устанавливаемые в проемах стен, потолков или в металлических конструкциях; опорные, предназначенные для установки на опорной плоскости; встраиваемые, то есть предназначенные для установки во внутренние полости электрооборудования.

По числу коэффициентов трансформации: с одним коэффициентом трансформации; с несколькими коэффициентами трансформации, получаемыми изменением числа витков первичной или вторичной обмотки, или обеих обмоток, или применением нескольких вторичных обмоток с различным числом витков, соответствующих различным значениям номинального тока.

По числу ступеней трансформации: одноступенчатые; каскадные (многоступенчатые), то есть с несколькими ступенями трансформации тока.

По выполнению первичной обмотки: одновитковые; многовитковые.

Одновитковые трансформаторы тока

Одновитковые трансформаторы тока (рисунок 1) имеют две разновидности: без собственной первичной обмотки; с собственной первичной обмоткой. Одновитковые ТТ, не имеющие собственной первичной обмотки, выполняются встроенными, шинными или разъемными.

Встроенный трансформатор тока 1 (рисунок 1) представляет собой магнитопровод с намотанной на него вторичной обмоткой и не имеет собственной первичной обмотки. Ее роль выполняет токоведущий стержень проходного изолятора. Этот трансформатор тока не имеет изоляционных элементов между первичной и вторичной обмотками. Их роль выполняет изоляция проходного изолятора.

В шинном трансформаторе тока 1 роль первичной обмотки выполняют одна или несколько шин распределительного устройства, пропускаемые при монтаже сквозь внутреннюю полость проходного изолятора. Последний изолирует первичную обмотку от вторичной.

Рисунок 1. Схема трансформатора тока.
–––––– собственная первичная обмотка ТТ; – – – – токоведущий стержень проходного изолятора (шина)

Разъемный трансформатор тока 2 тоже не имеет собственной первичной обмотки. Его магнитопровод состоит из двух частей, стягиваемых болтами. Он может размыкаться и смыкаться вокруг проводника с током, являющимся первичной обмоткой этого ТТ. Изоляция между первичной и вторичной обмотками наложена на магнитопровод со вторичной обмоткой.

Одновитковые ТТ, имеющие собственную первичную обмотку, выполняются со стержневой первичной обмоткой или с U-образной.
Трансформатор тока 3 имеет первичную обмотку в виде стержня кругового или прямоугольного сечения, закрепленного в проходном изоляторе.

Трансформатор 4 имеет U-образную первичную обмотку, выполненную таким образом, что на нее наложена почти вся внутренняя изоляция ТТ.

Многовитковые трансформаторы тока

Многовитковые трансформаторы тока (рисунок 1) изготавливаются с катушечной первичной обмоткой, надеваемой на магнитопровод; с петлевой первичной обмоткой 5 , состоящей из нескольких витков; со звеньевой первичной обмоткой 6 , выполненной таким образом, что внутренняя изоляция трансформатора тока конструктивно распределена между первичной и вторичной обмотками, а взаимное расположение обмоток напоминает звенья цепи; с рымовидной первичной обмоткой, выполненной таким образом, что внутренняя изоляция трансформатора тока нанесена в основном только на первичную обмотку, имеющую форму рыма.

По роду изоляции между первичной и вторичной обмотками ТТ изготавливаются с твердой (фарфор, литая изоляция, прессованная изоляция и так далее); с вязкой (заливочные компаунды); с комбинированной (бумажно-масляная, конденсаторного типа) или газообразной (воздух, элегаз) изоляцией.

По принципу преобразования тока ТТ делятся на электромагнитные и оптико-электронные.

Основные параметры и характеристики трансформаторов тока

Основными параметрами и характеристиками трансформатора тока в соответствии с ГОСТ 7746-2001 являются:

1. Номинальное напряжение – действующее значение линейного напряжения, при котором предназначен работать ТТ, указываемое в паспортной таблице трансформатора тока. Для отечественных ТТ принята шкала номинальных напряжений, кВ:

0,66; 6; 10; 15; 20; 24; 27; 35; 110; 150; 220; 330; 500; 750; 1150.

2. Номинальный первичный ток I 1н – указываемый в паспортной таблице ТТ ток, проходящий по первичной обмотке, при котором предусмотрена продолжительная работа ТТ. Для отечественных ТТ принята следующая шкала номинальных первичных токов, А:

1; 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000; 6000; 8000; 10000; 12000; 14000; 16000; 18000; 20000; 25000; 28000; 30000; 35000; 40000.

В трансформаторах тока, предназначенных для комплектования турбо- и гидрогенераторов, значения номинального тока свыше 10000 А являются рекомендуемыми.

Трансформаторы тока, рассчитанные на номинальный первичный ток 15; 30; 75; 150; 300; 600; 750; 1200; 1500; 3000 и 6000 А, должны допускать неограниченно длительное время прохождения наибольшего рабочего первичного тока, равного соответственно 16; 32; 80; 160; 320; 630; 800; 1250; 1600; 3200 и 6300 А. В остальных случаях наибольший первичный ток равен номинальному первичному току.

3. Номинальный вторичный ток I 2н – указываемый в паспортной таблице ТТ ток, проходящий по вторичной обмотке. Номинальный вторичный ток принимается равным 1, 2 или 5 А.

2н соответствует полному сопротивлению его внешней вторичной цепи, выраженному в омах, с указанием коэффициента мощности. Вторичная нагрузка может также характеризоваться полной мощностью в вольт-амперах, потребляемой ею при данном коэффициенте мощности и номинальном вторичном токе.

Вторичная нагрузка с коэффициентом мощности cosφ 2 = 0,8, при которой гарантируется установленный класс точности ТТ или предельная кратность первичного тока относительно его номинального значения, называется номинальной вторичной нагрузкой ТТ z 2н.ном.

Для отечественных трансформаторов тока установлены следующие значения номинальной вторичной нагрузки S 2н.ном, выраженной в вольт-амперах, при коэффициенте мощности cosφ 2 = 0,8:

3; 5; 10; 15; 20; 25; 30; 50; 60; 75; 100.

Соответствующие значения номинальной вторичной нагрузки z 2н.ном (в омах) определяются выражением:

z 2н.ном = S 2н.ном / I 2 2ном.

5. Коэффициент трансформации ТТ равен отношению первичного тока ко вторичному току.

В расчетах трансформаторов тока применяются два термина: действительный коэффициент трансформации n и номинальный коэффициент трансформации n н. Под действительным коэффициентом трансформации n понимается отношение действительного первичного тока к действительному вторичному току. Под номинальным коэффициентом мощности n н понимается отношение номинального первичного тока к номинальному вторичному току.

6. Стойкость ТТ к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.

Ток электродинамической стойкости I д равен наибольшей амплитуде тока короткого замыкания за все время его протекания, которую ТТ выдерживает без повреждений, препятствующих его дальнейшей исправной работе. Ток I д характеризует способность ТТ противостоять механическим (электродинамическим) воздействиям тока короткого замыкания. Электродинамическая стойкость может характеризоваться также кратностью K д, представляющей собой отношение тока электродинамической стойкости к амплитуде номинального первичного тока. Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные ТТ.

Ток термической стойкости I tт равен наибольшему действующему значению тока короткого замыкания за промежуток t т, которое ТТ выдерживает в течение этого промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах короткого замыкания, и без повреждений, препятствующих его дальнейшей работе.

Термическая стойкость характеризует способность ТТ противостоять тепловым воздействиям тока короткого замыкания. Для суждения о термической стойкости ТТ необходимо знать не только значения тока, проходящего через трансформатор, но и время его прохождения или, иначе говоря, знать общее количество выделенного тепла, которое пропорционально произведению квадрата тока I tт и времени его прохождения t т. Это время, в свою очередь, зависит от параметров сети, в которой установлен ТТ, и изменяется от одной до нескольких секунд.

Термическая стойкость может характеризоваться кратностью K т тока термической стойкости, представляющей собой отношение тока термической стойкости к действующему значению номинального первичного тока.

В соответствии с ГОСТ 7746-2001 для отечественных трансформаторов тока установлены следующие токи термической стойкости:
а) двухсекундный I 2т (или его кратность K 2т по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения 330 кВ и выше;
б) трехсекундный I 3т (или его кратность K 3т по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения до 220 кВ включительно.

Время t т протекания тока термической стойкости может быть меньше указанных значений и должно устанавливаться в технических условиях на конкретный тип ТТ.

Между токами электродинамической и термической стойкости должно быть соблюдено соотношение

I д ≥ 1,8 × √2 × I т

Температура токоведущих частей ТТ при прохождении тока термической стойкости не должна превышать: 200°С для токоведущих частей из алюминия; 250°С для токоведущих частей из меди и ее сплавов, и 300°С для токоведущих частей из меди и ее сплавов, не соприкасающихся с органической изоляцией или маслом. При определении указанных значений температуры следует исходить из начальных ее значений, соответствующих длительной работе трансформатора тока при номинальном токе.

Значения токов электродинамической и термической стойкости государственным стандартом не нормируются. Однако они должны соответствовать электродинамической и термической стойкости других аппаратов высокого напряжения, устанавливаемых в одной цепи с трансформатором тока. В таблице 2 приведены практические данные динамической и термической стойкости отечественных трансформаторов тока.

Таблица 2

Данные электродинамической и термической стойкости некоторых типов отечественных трансформаторов тока

Трансформатор тока Номинальный первичный ток, А Кратность
электродинамическая К д Термическая К т
Проходной одновитковый:
нормальное исполнение

Усиленное исполнение


до 600
1000
1500
до 600
1000

160 – 170
100 – 110
60 – 70
150 – 170
100 – 110

80
80
80
120 – 140
120 – 140
Шинный 2000 – 6000 250 – 300
Проходной многовитковый:
нормальное исполнение
усиленное исполнение

5 – 300
5 – 300

45 – 250
90 – 500

70 – 80
100 – 250
Опорной наружной установки:
со звеньевой обмоткой
с рымовидной обмоткой

до 2000
до 2000

60 – 150
80 – 100

60 – 150
30 – 45

7. Механическая нагрузка определяется давлением ветра со скоростью 40 м/с на поверхность трансформатора тока и тяжением подводящих проводов (в горизонтальном направлении в плоскости выводов первичной обмотки), которое должно быть не менее:
500 Н (50 кгс) – для трансформаторов на номинальное напряжение до 35 кВ включительно;
1000 Н (100 кгс) – для трансформаторов на номинальное напряжение 110 – 220 кВ;
1500 Н (150 кгс) – для трансформаторов на номинальное напряжение 330 кВ и выше.

Таковы основные технические параметры и характеристики трансформаторов тока. При проектировании ТТ помимо этих параметров должны учитываться следующие требования к конструкции:

1. Контактные зажимы выводов первичной обмотки трансформаторов тока должны выполняться с учетом требований ГОСТ 10434-82, а трансформаторов тока наружной установки – с учетом, кроме того, требований ГОСТ 21242-75. Контактные зажимы вторичных обмоток должны выполняться с учетом требований ГОСТ 10434-82. Контактные зажимы вторичных обмоток встроенных трансформаторов тока могут быть расположены на конструктивных элементах аппарата, в который встроен трансформатор тока. В трансформаторах тока наружной установки выводные зажимы вторичной обмотки должны находиться в специальных коробках, надежно защищающих их от попадания атмосферных осадков.

Обозначение выводных концов первичных и вторичных обмоток согласно ГОСТ 7746-2001 должно производиться в соответствии с таблицей 3. Линейные выводы первичной обмотки обозначаются символами Л 1 и Л 2 , которые должны наноситься так, чтобы при направлении тока в первичной обмотке от Л 1 и Н 1 соответственно к К i и Л 2 вторичный ток проходил по внешней цепи (приборам) от И 1 к И 2 .

Таблица 3

Обозначения выводных концов первичных и вторичных обмоток


2. Маслонаполненный трансформатор тока должен иметь маслорасширитель (компенсатор) и указатель уровня масла. Вместимость маслорасширителя должна обеспечивать постоянное наличие в нем масла при всех режимах работы трансформатора тока – от отключенного состояния до нормированной токовой нагрузки – и при колебаниях температуры окружающего воздуха, установленных для данного климатического района.

В трансформаторах тока на номинальные напряжения 330 кВ и более обязательно должна быть предусмотрена защита масла от увлажнения, например посредством сильфонов. Целесообразно такую же защиту предусматривать и в трансформаторах тока на меньшие напряжения.

3. Размеры указателя уровня масла должны быть такими, чтобы обслуживающий персонал мог с безопасного расстояния наблюдать за уровнем масла в трансформаторе тока.

4. Трансформаторы тока, имеющие массу более 50 кг, должны иметь приспособления для подъема. Если такие приспособления невозможно выполнить, то завод-изготовитель должен указывать в инструкции места захвата трансформаторов тока при подъеме.

5. Трансформаторы тока, у которых амплитуда напряжения на разомкнутой вторичной обмотке при номинальном токе в первичной обмотке превышает 350 В, должны иметь надпись: "Внимание! Опасно! На разомкнутой обмотке высокое напряжение".

6. Трансформаторы тока, кроме встроенных, должны иметь контактную площадку для присоединения заземляющего проводника и заземляющий зажим в соответствии с требованиями ГОСТ 21130-75 и ГОСТ 12.2.007.3-75. Возле заземляющего зажима должен быть установлен знак заземления по ГОСТ 21130-75. Указанные требования не распространяются на ТТ с корпусом из литой смолы или пластмассы, не имеющие подлежащих заземлению металлических частей, а также на ТТ, не подлежащие заземлению согласно ГОСТ 12.2.007.0-75.

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

Конструкция измерительного трансформатора тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W 1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W 2 — число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I 1 . К катушке 2 подключается приборы, позволяющие установить значение тока I 2 , релейная защита, система автоматики и т.д.

Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I 1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I 2), его значение может быть 1,0 А (для ИТТ с I 1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I 2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: I НОМ1 /I НОМ2 , то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.


Перечень основных параметров измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:


Обозначения:

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые , их также называют одновитковыми. В зависимости от исполнения они могут быть:

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.


Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Расшифровка маркировки

Обозначение отечественных моделей интерпретируется следующим образом:

  • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
  • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
  • Третьей литерой шифруется исполнение изоляции.
  • Цифрами указывается класс напряжения (в кВ).
  • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
  • КТ, с указанием номинального тока первичной и вторичной обмотки.

Приведем пример расшифровки маркировки трансформатора тока.


Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

Схемы подключения

Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.


Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).


Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.


Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

Выбор

При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

Помимо этого I НОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

  • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
  • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
  • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ (п.1.5.1.). Пример расчета показан на картинке ниже.


Пример расчета трансформатора тока

Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

Обслуживание

Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

  • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
  • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
  • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
  • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
  • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
  • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
  • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

Измерительный трансформатор тока - это специальный прибор узкого направления, который предназначен для измерения переменного тока и его контроля. Чаще всего применяется в системах релейной защиты (автоматики) и измерительных приборов. Его использование необходимо тогда, когда непосредственное присоединение прибора для измерения, к электрической сети с переменным напряжением невозможно или небезопасно для персонала обслуживающего его. А также для организации гальванической развязки первичных силовых цепей от измерительных. Расчёт и выбор измерительного трансформатора тока выполняется таким образом, чтобы изменения формы сигнала были сведены к нулю, а влияние на силовую контролируемую цепь было минимальным.

Назначение измерительных трансформаторов

Главная функция этого измерительного прибора - это отображение изменений тока, максимально пропорционально. Трансформаторы тока гарантируют полную безопасность измерений, отделяя измерительные цепи от первичных с опасным высоким напряжением, которое чаще всего составляют тысячи вольт. Требования, предъявляемые к их классу точности очень велики, так как от этого зависит работа дорогостоящего мощного оборудования.

Принцип действия и конструкция

Трансформаторы измерительные выпускают с двумя и больше группами вторичных обмоток. Первая применяется для включения устройств релейной защиты и сигнализации. А другая, с большим классом точности, для подключения устройств точного измерения и учёта. Они помещены на специально изготовленный ферромагнитный сердечник, который набран из листов специальной электротехнической стали довольно тонкой толщины. Первичную обмотку непосредственно включают последовательно в измеряемую сеть, а ко вторичной обмотке подключают катушки различных измерительных приборов, чаще всего амперметров и счетчиков электроэнергии.

В трансформаторах тока, как и в большем количестве других таких электромагнитных устройств, величина первичного тока больше, чем вторичного. Первичная обмотка исполняется из провода разного сечения или же шины, в зависимости от номинального значения тока. В трансформаторах тока 500 А и выше, первичная обмотка чаще всего выполнена из 1-го единственного витка. Он может быть в виде прямой шины из меди или алюминия, которая проходит через специальное окно сердечника. Корректность измерений любого измерительного трансформатора характеризуется погрешностью значения коэффициента трансформации. Для того чтобы не перепутать концы, на них обязательно наносится маркировка.
Аварийная небезопасная работа, связана с обрывом вторичной цепи ТТ при включенной в цепь первичной, это приводит к очень сильному намагничиванию сердечника и даже при обрывe вторичной обмотки. Поэтому при включении без нагрузки вторичные обмотки соединяются накоротко.
По классу точности все измерительные ТТ разделены на несколько уровней. Особенно точные, называются лабораторные и имеют классы точности не больше 0,01–0,05;

Схемы соединений

Схемы соединений, представленные ниже, дают возможность персоналу контролировать токи в каждой из фаз.

В целях безопасности персонала, низковольтного измерительного оборудования и приборов один вывод вторичной обмотки, а также корпус заземляют.

Классификация и выбор

По конструкции и исполнению трансформаторы тока используемые в измерительных цепях делятся на:

При выборе трансформатора тока стоит знать главное, что при протекании по первичной обмотке номинального тока в его вторичной обмотке, которая замкнута на измерительный прибор, будет обязательно 5 А. То есть если нужно проводить измерение токовых цепей где его расчётная рабочая величина будет примерно равна 200 А. Значит, при установке измерительного трансформатора 200/5, прибор будет постоянно показывать верхние приделы измерения, это неудобно. Нужно чтобы рабочие пределы были примерно в середине шкалы, поэтому в этом конкретном случае нужно выбирать трансформатор тока 400/5. Это значит что при 200 А номинального тока оборудования на вторичной обмотке будет 2,5 А и прибор будет показывать эту величину с запасом в сторону увеличения или уменьшения. То есть и при изменениях в контролируемой цепи будет видно насколько данное электрооборудование вышло из нормального режима работы.

Вот основные величины, на которые стоит обратить внимание при выборе измерительных трансформаторов тока:

  1. Номинальное и максимальное напряжение в первичной обмотке;
  2. Номинальное значение первичного тока;
  3. Частота переменного тока;
  4. Класс точности, для цепей измерения и защиты он разный.

Техническое обслуживание

Эксплуатация измерительных трансформаторов не является очень сложным и трудоёмким процессом. Действия персонала заключаются, в основном, в надзоре за исправностью его вторичных цепей, наличием защитных заземлений и показаниями приборов контроля, а также счётчиков. Осмотр чаще всего производится визуальный, из-за опасности поражения человека высоким напряжением, вход за ограждения, где установлены трансформаторы строго запрещён. Однако, это касается в большей степени систем с напряжением выше 1000 Вольт. Для низковольтных цепей визуальный осмотр на наличие нагрева соединений, а также коррозии контактных зажимов является неотъемлемой работой электротехнического персонала. Самый часто применяемый прибор для измерения тока в цепях 0,4 кВ это токоизмерительные клещи. Так как при расчёте и разработке пусковой аппаратуры очень редко используются стационарные трансформаторы для измерения.

В любом случае нужно обращать внимание и принимать меры к устранению обнаруженных дефектов таких как:

  1. Обнаружение трещин в изоляторах и фарфоровых диэлектрических элементах;
  2. Плохое состояние армированных швов;
  3. Потрескивания и разряды внутри устройства;
  4. Отсутствие заземления корпуса или вторичной обмотки.

Проводя обслуживание измерительных трансформаторов, на щитах где установлены приборы, нужно смотреть не только за показаниями приборов, а ещё и за контактными соединениями проводов, которые подключаются к ним. Кстати, их сечение не должно быть меньше 2,5 мм² для медных проводов, и 4 мм² для алюминиевых.

Проверка измерительных трансформаторов

Испытание измерительных трансформаторов сводится к измерению сопротивления изоляции и коэффициента трансформации, который определяется по следующей схеме.

При этом в первичную обмотку от специального нагрузочного трансформатора или автотрансформатора подаётся ток не меньше 20% от номинального. Как известно, коэффициент трансформации будет равен соотношению тока в первичной обмотке к току во вторичной. После чего это значение сравнивается с номиналом. Если трансформатор имеет несколько вторичных обмоток, то необходимо проверит каждую. И также нельзя забывать о наличии правильной маркировки.

Выбор нужно трансформатора тока, а также их испытательные характеристики определяют в лабораторных условиях специальный высококвалифицированный электротехнический персонал, где и выдаётся соответствующий документ по его результатам.

В данной статье мы подробно рассмотрим что такое трансформатор тока, опишем принцип его работы, какие бывают типы, а так же расчеты и схемы трансформатора тока.

Описание и принцип работы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра. Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

В отличие от трансформатора напряжения или мощности, рассматриваемого ранее, трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке. Купить трансформатор тока вы можете в популярном интернет магазине Алиэкспресс:

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока: обмоточный , тороидальный и стержневой .

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Трансформаторы тока могут снизить или «понизить» уровни тока с тысяч ампер до стандартного выходного сигнала с известным отношением либо к 5 А, либо к 1 А для нормальной работы. Таким образом, небольшие и точные приборы и устройства управления могут использоваться с трансформаторами тока, потому что они изолированы от любых высоковольтных линий электропередач. Существует множество применений для измерения и использования для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, защитные реле или в качестве катушек отключения в магнитных выключателях или MCB.

Конструкция и схема трансформатора тока

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, чтобы обеспечить максимальный вторичный ток, соответствующий полномасштабному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное соотношение обратных витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка трансформатора тока обычно для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартную вторичную номинальную мощность 5 А, при этом первичные и вторичные токи выражаются в таком соотношении, как 100/5. Это означает, что ток первичной обмотки в 20 раз больше, чем ток вторичной обмотки, поэтому, когда в первичном проводнике протекает 100 ампер, во вторичной обмотке будет протекать 5 ампер. Трансформатор тока, скажем, 500/5, будет производить 5 А во вторичной обмотке при 500 А в первичной обмотке, что в 100 раз больше.

Увеличивая количество вторичных обмоток Ns , ток вторичной обмотки можно сделать намного меньшим, чем ток в измеряемой первичной цепи, потому что, когда Ns увеличивается, Is уменьшается пропорционально. Другими словами, число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и мы знаем из нашего учебника по трансформаторам напряжения с двойной обмоткой, что это отношение витков равно:

из которого мы получаем:

Коэффициент тока устанавливает коэффициент витков, и, поскольку первичный обычно состоит из одного или двух витков, тогда как вторичный может иметь несколько сотен витков, соотношение между первичным и вторичным может быть довольно большим. Например, предположим, что номинальный ток первичной обмотки составляет 100А. Вторичная обмотка имеет стандартный рейтинг 5А. Тогда соотношение между первичным и вторичным токами составляет 100А-5А или 20: 1. Другими словами, первичный ток в 20 раз больше вторичного тока.

Однако следует отметить, что трансформатор тока с номиналом 100/5 не совпадает с трансформатором с номиналом 20/1 или подразделениями 100/5. Это связано с тем, что отношение 100/5 выражает «номинальный ток на входе / выходе», а не фактическое соотношение первичных и вторичных токов. Также обратите внимание, что число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения.

Так, например, трансформатор тока с отношением, скажем, 300 / 5А можно преобразовать в другой из 150 / 5А или даже 100 / 5А, пропустив основной первичный проводник через его внутреннее окно два или три раза, как показано ниже. Это позволяет более высокому значению трансформатора тока обеспечивать максимальный выходной ток для амперметра, когда используется на меньших первичных линиях тока.

Пример трансформатора тока

Трансформатор тока стержневого типа, который имеет 1 виток на своей первичной обмотке и 160 витков на своей вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр необходим для полного отклонения шкалы, когда первичный ток составляет 800 А. Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Вторичный ток:

Напряжение через амперметр:

Выше мы видим, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру с очень малым сопротивлением, падение напряжения на вторичной обмотке составляет всего 1,0 В при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически разомкнута, и, таким образом, трансформатор действует как повышающий трансформатор. Это частично связано с очень большим увеличением намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление вторичной утечки влияет на вторичное индуцированное напряжение, потому что во вторичной обмотке нет противоположного тока, чтобы предотвратить это.

Результатом является очень высокое напряжение, наведенное во вторичной обмотке, равное отношению: Vp (Ns / Np) , развиваемое через вторичную обмотку. Например, предположим, что наш трансформатор тока сверху используется на трехфазной линии электропередачи напряжением 480 вольт. Следовательно:

Это высокое напряжение связано с тем, что отношение вольт на витки в первичной и вторичной обмотках практически постоянно, а поскольку Vs = Ns * Vp , значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не следует оставлять разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании. Если амперметр (или нагрузка) должен быть удален, сначала следует установить короткое замыкание на вторичных клеммах, чтобы исключить риск удара током.

Это высокое напряжение объясняется тем, что когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения и ничто не может его остановить, он создает аномально большое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8 кВ! Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Ручные трансформаторы тока

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Подводя итог, можно сказать, что трансформатор тока (ТТ) представляет собой тип измерительного трансформатора, используемого для преобразования первичного тока во вторичный ток через магнитную среду. Его вторичная обмотка обеспечивает значительно уменьшенный ток, который можно использовать для обнаружения условий сверхтока, пониженного тока, пикового или среднего тока.

Первичная катушка трансформатора тока всегда соединена последовательно с главным проводником, в результате чего ее также называют последовательным трансформатором. Номинальный вторичный ток рассчитан на 1А или 5А для простоты измерения. Конструкция может представлять собой один первичный виток, как в типах тороидальных, кольцевых или стержневых, или несколько витков первичной обмотки, как правило, для малых коэффициентов тока.

Трансформаторы тока предназначены для использования в качестве устройств пропорционального тока. Поэтому вторичная обмотка трансформаторов тока никогда не должна эксплуатироваться в разомкнутой цепи, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании.

Очень высокое напряжение возникает в результате разомкнутой цепи вторичной цепи трансформатора тока под напряжением, поэтому их клеммы должны быть замкнуты накоротко, если амперметр должен быть удален или когда ТТ не используется перед включением питания системы.

В следующей статье о трансформаторах мы рассмотрим, что происходит, когда мы соединяем вместе три отдельных трансформатора в конфигурации «звезда» или «треугольник», чтобы получить более мощный силовой трансформатор, называемый , который используется для питания трехфазных источников питания.

Измерительные трансформаторы являются обособленной группой электротехнических изделий.

В зависимости от конструкции назначение измерительных трансформаторов тока и напряжения различно – они преобразуют основные показатели электрических цепей (напряжение или ток), уменьшая их величину до заданного значения.

Главная задача заключается в достижении необходимых параметров, при которых точно и корректно работает контрольно-измерительная аппаратура.

Все измерительные трансформаторы делятся на две группы исходя из основных критериев:

  • по току;

  • по напряжению.

В зависимости от их принадлежности к одной из категорий существенно отличается конструкция и принцип работы изделий. Давайте более подробно рассмотрим основные конструктивные особенности и назначение измерительных трансформаторов каждой группы.

Принцип действия измерительных трансформаторов напряжения основан на понижении подводимого напряжения и изолировании подключенных после него измерительных приборов от влияния повышенного напряжения в сетях переменного тока.

Дополнительно повышается уровень безопасности для персонала, который обслуживает высоковольтные сети и снимает контрольные показания с приборов. Широкое применение такие изделия получили в релейных автоматических системах защиты и в различных электроустановках.

Благодаря включению в цепь питания этого трансформатора можно использовать стандартные контрольно-измерительные приборы для снятия точных показаний в линиях с высоким значением напряжения.

В противном случае пришлось бы существенно менять конструкцию измерительной аппаратуры и увеличивать ее в размерах за счет дополнительных катушек индуктивности, изоляции и других элементов.

Принцип действия измерительных трансформаторов тока заключается в снижении до необходимого уровня силы тока от первичного источника, к которому запитан измерительный прибор. Главное применение таких трансформаторов – контроль и снятие точных показаний в высоковольтных сетях.

Основная особенность устройства заключается в полном контроле силы тока и обеспечении безопасной работы с подключенной контрольно-измерительной аппаратурой, на которую ограничена подача тока высокого значения.

Варианты маркировки

На шильде изделия можно встретить различную информацию, которая поможет подобрать правильное устройство исходя из заданных параметров основных характеристик. Маркировка измерительных трансформаторов различается в зависимости от типа устройства.

Так, для трансформаторов тока характерны следующие символы и обозначения:

  • «Т» (первая буква) – трансформатор тока;

  • вторая буква в обозначении отвечает за тип конструкции. Может быть четыре варианта: «О», «П», «Ф», «Ш», что означает опорный, проходной, фарфор, шинный;

  • третьей буквой маркируется материал изоляции – литая (Л), масляная (М) или газовая (Г).

После буквенной маркировке указываются числовые значения, которые характеризуют класс изоляции, климат и коэффициент трансформации. Для примера: маркировка ТОМ-3У2 100/3 читается как «трансформатор тока опорный с масляной изоляцией, 3кВ, для умеренного климата второго класса с коэффициентом 100:3».

У трансформаторов напряжения маркировка отличается большим количеством букв, которые обозначают количество фаз, тип изоляции, класс прибора и его назначение, тип конструкции.

Более подробно это выглядит следующим образом:

  • класс трансформатора – Н (напряжение);

  • по количеству фаз – одна (О) или три (Т);

  • принадлежность – измерительный (И);

  • особенности конструкции – заземляемая первичная обмотка (З);

  • разновидность – каскадный (К), антирезонансный (А), цельнолитой корпус из полимера (Л), наличие емкостного делителя (ДЕ), фарфоровая покрышка (Ф);

  • тип исполнения – масляный (М), сухой (С).

Знание маркировки существенно облегчает выбор измерительных трансформаторов.

Особенности монтажа

Монтаж измерительных трансформаторов производится высококвалифицированными специалистами, которые обязаны иметь категорию допуска к электротехническим работам не ниже третьего уровня. Перед установкой необходимо провести проверку на выявление возможных дефектов.

  • визуальный осмотр корпуса на предмет механических повреждений;

  • проверка коэффициента трансформации на соответствие заданным параметрам;

  • состояние вторичной обмотки (отсутствие обрывов);

  • правильно ли промаркированы все выводы для подключения к источнику питания и контрольно-измерительной аппаратуре;

  • целостность фарфоровой покрышки и токоведущего стержня.

После визуального осмотра можно переходить к процессу установки и дальнейшего введения в эксплуатацию.

Для трансформаторов напряжения также проводят визуальный осмотр перед установкой.

Обращают внимание на следующие моменты:

  • целостность корпуса;

  • отсутствие течи масла;

  • предварительное испытание измерительных трансформаторов (определяют полярность у выводов для низшего и высшего напряжения, измеряют коэффициент трансформации, проверяют величину сопротивления обмоток);

  • проверка уровня масла. В больших устройствах количества масла определяют по специальному индикатору, а в компактных изделиях без расширителя не доливают масла примерно на 2-3 сантиметра до крышки. Образовавшийся воздушный карман и будет играть роль расширителя.

Все монтажные и пусковые работы проводятся в соответствии с указаниями изготовителя и с соблюдением правил безопасности.

Эксплуатация

Эксплуатация измерительных трансформаторов должна проводиться строго в соответствии с рекомендациями и предписаниями фирмы-изготовителя. В процессе использования устройств рекомендуется регулярный профилактический осмотр с целью выявления возможных неисправностей и быстрого их устранения.

Регулярное обслуживание для трансформаторов тока предусматривает следующие мероприятия:

  • контроль нагрузки внешней цепи с целью недопущения перегрузок (коэффициент перегруженности линии не может быть больше 20%);

  • внешний осмотр состояния подводящих контактов;

  • проверка целостности фарфоровых изоляторов;

  • осмотр внешней изоляции, удаление загрязнений и влаги.
  • состояние внешнего кожуха на предмет наличия повреждений и подтеков масла;

  • проверка уровня масла;

  • необходимо обращать внимание на наличие специфических тресков и посторонних шумов внутри изделия;

  • проверка целостности фарфоровых изоляторов и сварных швов.

При обнаружении любого вида неполадок устройство обесточивается и выводится из эксплуатации.

Ремонт измерительных трансформаторов проводят специализированные организации (обычно это сертифицированные мастерские от фирм производителей оборудования).

Чтобы узнать больше о новинках в мире электротехники, увидеть современное оборудование и узнать о передовых технологиях в профильных отраслях, достаточно посетить выставку «Электро».

Широкая международная экспозиция будет принимать посетителей на территории ЦВК «Экспоцентр».

На выставке можно больше узнать больше о назначении, принципе действия измерительных трансформаторов, а также особенностях монтажа и ремонта устройств.

Читайте другие наши статьи: