Многоуровневые схемы получения инверсной населенности. Инверсия населённостей Электропроводность в сильных электрических полях

Лекция 1 2 .

Природа света. Спонтанное и вынужденное излучение. Инверсия заселенности энергетических уровней. Принцип работы лазера.

1. Атомы могут находиться в стационарных состояниях с дискретными значениями энергии сколь угодно долгое время, не излучая энергии.

1.1. Переход из одного стационарного состояния в другое стационарное состояние сопровождается поглощением или испусканием кванта электромагнитного излучения.

1.2. При поглощении кванта электромагнитного излучения электрон переходит на уровень с большим энергетическим значением, а сам атом переходит в более высокоэнергетическое возбужденное состояние, в котором может находиться только в течение 10-8 с.

1.2.1. Так как для перехода на более высокоэнергетический уровень необходимо строго определенное значение энергии, то при возбуждении атомов квантами электромагнитного излучения поглощаются только те кванты, энергия которых равна разнице между энергиями исходного и конечного состояний.

1.2.2. Если вещество возбуждается излучением со сплошным спектром, то поглощаться будут только те кванты, энергии которых соответствуют энергиям перехода электрона на более высокоэнергетические уровни. В результате прохождения такого излучения через вещество в спектре этого излучения появляются темные линии, которые называются спектром поглощения .

1.3. Переход атома в основное состояние может происходить как непосредственно, так и путем последовательного перемещения электрона на уровни с меньшей энергией.


1.4. Переход электрона на уровень с меньшей энергией сопровождается испусканием кванта электромагнитного излучения, энергия которого равна разности энергий уровней исходного и конечного состояний.

1.5. Так как возбужденных состояний может быть достаточно много, то испускаемые кванты имеют различную энергию, а, следовательно, различную длину волны.

1.6. Поскольку возбужденные состояния имеют дискретные значения энергии, совокупность испускаемых квантов образует линейчатый спектр.

1.6.1. Переходы электронов с высокоэнергетических уровней на один какой-то уровень образуют серию линий в спектре, параметры которой являются характерными для данного элемента и отличаются от параметров аналогичной серии другого элемента.

1.6.2. Совокупность серий образует спектр характеристического излучения вещества, который является однозначной характеристикой данного вещества.

1.6.3. На основе измерений параметров характеристического спектра созданы методы спектрального анализа.

2. Испускание квантов возбужденным атомом в отсутствие внешнего воздействия обычно происходит спонтанно, а возникающее при этом излучение называется спонтанным излучением .

2.1. При спонтанном испускании каждый квант возникает случайным образом и имеет свою фазу колебаний и поэтому спонтанное излучение не обладает временной когерентностью .

2.2. В соответствии с квантовой теорией вероятность рν нахождения атома в состоянии с энергией εν подчиняется распределению Больцмана

которое позволяет при заданном значении величины подводимой к атому энергии определить способность электрона занять тот или иной энергетический уровень.

2.3. Количество электронов, одновременно находящихся на энергетическом уровне называется заселенностью уровня .

2.4. При отсутствии внешних воздействий равновесная при данной температуре заселенность уровней поддерживается спонтанным испусканием квантов.

3. Вид спектра спонтанного излучения зависит от состояния атома, излучающего этот спектр.

3.1. Изолированные атомы испускают излучение с атомным спектром .

3.1.1. Состав атомного спектра для атома водорода и водородоподобных ионов может быть легко рассчитан по формуле Бальмера-Ридберга.

3.1.2. Для других атомов и ионов расчет атомных спектров представляет более сложную задачу.

3.2. Если атомы образуют молекулу, то возникает молекулярный спектр (полосатый спектр ). Каждая полоса в этом спектре представляет собой совокупность тесно расположенных спектральных линий.

3.2.1. Как и в атомных спектрах, каждая линия молекулярного спектра возникает в результате изменения энергии молекулы.

3.2.2. Энергию молекулы можно представить в виде

где – энергия поступательного движения молекулы; – энергия вращательного движения молекулы; – энергия колебательного движения атомов молекулы друг относительно друга; – энергия электронной оболочки молекулы; – внутриядерная энергия молекулы.

3.2.3. Энергия поступательного движения молекулы не квантована и ее изменения не могут привести к возникновению молекулярного спектра, а влияние на молекулярный спектр в первом приближении можно не учитывать.


3.2.4. По правилу частот Бора

где , , – изменения соответствующих частей энергии молекулы.

3.2.5. Образование полос происходит из-за того, что

3.2.6. Молекулярные спектры имеют довольно сложный вид.

3.2.6.1. Спектр, обусловленный только переходом с одного вращательного уровня на другой вращательный уровень (вращательный спектр ), располагается в далекой инфракрасной области (длина волны 0,1 ¸ 1 мм).

3.2.6.2. Спектр, обусловленный только переходом с одного колебательного уровня на другой колебательный уровень (колебательный спектр ), располагается в инфракрасной области (длина волны 1 ¸ 10 мкм).

3.2.6.3. Спектр, обусловленный только переходом с одного электронного уровня на другой электронный уровень (атомный спектр ), располагается в видимой, ультрафиолетовой и рентгеновской областях спектра (длина волны 0,8 мкм ¸ 10-10 м).

3.2.6.4. При изменении энергии колебательного движения у молекулы может измениться и энергия вращательного движения. При этом возникает колебательно-вращательный спектр , который представляет собой колебательный спектр, каждая линия которого сопровождается близко расположенными линиями вращательных переходов.

3.2.6.5. Переходы между электронными уровнями молекулы часто сопровождаются переходами между колебательными уровнями. В результате возникает спектр, называемый электронно-колебательным , а, поскольку колебательным переходам сопутствуют вращательные переходы, то колебательные уровни в электронно-колебательном спектре представляются в виде размытых полос.

3.3. Комбинационное рассеяние (самостоятельное изучение ).

4. Переход атомов из более возбужденного состояния в менее возбужденное состояние под влиянием воздействия внешнего кванта электромагнитного излучения называется вынужденным излучением .

4.1. Вероятность вынужденного излучения зависит от энергии кванта, воздействующего на возбужденные атомы. Максимальная вероятность возникновения вынужденного излучения будет при равенстве энергии возбуждающего кванта энергии перехода.

4.2. При прохождении кванта через систему возбужденных атомов возникает поток квантов, энергия которых равна энергии возбуждающего кванта (эффект оптического усиления ).

4.3. Поглощение света в веществе происходит в соответствии с законом Бугера-Ламберта

где – натуральный показатель поглощения, а х – толщина поглощающего слоя.

Усиление потока квантов при прохождении через вещество аналогично отрицательному коэффициенту поглощения (отрицательная адсорбция света ).

4.4. Для среды с отрицательным коэффициентом поглощения справедлив закон Бугера-Ламберта-Фабриканта

Интенсивность света резко возрастает с увеличением толщины слоя.

4.5. Среда с отрицательным коэффициентом поглощения называется активной средой .

5. Между двумя энергетическими уровнями возможны три типа переходов

    переход электрона в более высокоэнергетическое состояние при поглощении кванта (1); спонтанный переход электрона в менее высокоэнергетическое состояние (2); вынужденный переход электрона в менее высокоэнергетическое состояние (3).

5.1. Количество электронов на возбужденных уровнях подчиняется распределению Больцмана и называется заселенностью уровня .

5.2. При обычной схеме излучения заселенность N более высокоэнергетического уровня меньше, чем заселенность менее высокоэнергетического уровня.

5.3. Число актов поглощения кванта пропорционально заселенности N 1 менее высокоэнергетического уровня, а число актов испускания пропорционально заселенности N 2 более высокоэнергетического уровня.

5.4. Натуральный показатель поглощения в законе Бугера-Ламберта пропорционален разности между числом актов поглощения и испускания

где k – коэффициент пропорциональности.

5.5. При обычной схеме излучения больцмановское распределении электронов за счет спонтанных переходов ().

5.6. За счет интенсивного возбуждения системы атомов (накачка ) можно добиться такого нарушения больцмановского распределения, что N 2 станет больше N 1 (инверсная заселенность ). Тогда натуральный показатель поглощения становится меньше нуля и мы получаем закон Бугера-Ламберта-Фабриканта.

6. Возникновение вынужденного излучения реализовано в лазерах .

6.1. Первоначально для получения вынужденного излучения использовалась трехуровневая схема в рубине, кристаллическая решетка которого содержит примесь Cr, создающего узкий двойной дополнительный уровень В в зоне возбужденных состояний.

6.1.1. При возбуждении атомной системы светом ксеноновой лампы (оптической накачке ) большое количество электроновпри поглощении квантов (1) переводится с основного уровня А на возбужденные уровни C и D .

6.1.2. Электроны с этих уровней посредством спонтанных переходов (2) без излучения заселяют менее высокоэнергетический уровень В , создавая на нем инверсную заселенность. Энергия перехода при этом передается кристаллической решетке и повышает температуру вещества.

6.1.3. Переходы с инверсного уровня В на основной А осуществляются под действием квантов с энергией, соответствующей разности энергий между инверсным уровнем и основным уровнем.

6.2. Аппаратно схема лазера представляет собой стержень А из активного вещества, ограниченный с торцов двумя зеркалами – непрозрачным В и полупрозрачным С .

6.2.1. После накачки активного вещества первый же переход с инверсного уровня на основной приводит к образованию кванта, запускающего процесс возникновения лазерного излучения.

6.2.2. Распространение кванта в активной среде приводит к инициации вынужденных переходов. Наибольшей эффективностью в соответствии с законом Бугера-Ламберта-Фабриканта обладают кванты, распространяющиеся вдоль стержня.

6.2.3. При отражении от полупрозрачного зеркала за пределы активной среды выходит часть потока квантов, которая и является лазерным излучением. Остальная часть потока квантов возвращается в активную среду, для инициации вынужденных переходов.

6.2.4. Небольшое отклонение направления распространения квантов от оси кристалла устраняется при помощи искривленной поверхности отражающих зеркал В и С .

6.2.5. Эффект квантового усиления значительно увеличивается при многократном прохождении инициирующих квантов через активную среду.

6.2.6. Инверсный уровень хрома состоит из двух подуровней и потому излучение рубинового лазера состоит из квантов с двумя длинами волн (0,6927 нм и 0,6943 нм).

7. В настоящее время в качестве активной среды в лазерах используются:

    твердые тела (рубин; иттрий-алюминиевыйгранат, активированный неодимом; стекло, активированное неодимом); газы и газовые смеси (N2; CO; CO2; пары металлов); жидкости (растворы органических красителей); полупроводники.

7.1. Лазерное излучение в твердых телах возникает при переходах между энергетическими уровнями примесных атомов. Длина волны в пределах 0,35¸1,06 мкм при мощности до 1 кВт.

7.2. Лазерное излучение в газах чаще всего возникает при электронно-колебательных переходах между различными электронными состояниями (N2-лазер, эксимерные лазеры) или на колебательно-вращательных переходах в пределах одного электронного состояния (СО2-, СО-лазеры). Длина волны в пределах 5¸11 мкм при мощности до 15 кВт.

7.3. Лазерное излучение в жидкостях при электронных переходах между энергетическими уровнями красителей. Длина волны в пределах 0,2¸5 мкм при мощности до 1,5 Вт. Возможна плавная перестройка длины волны.

7.4. Инверсия заселенности в полупроводниковых лазерах создается на переходах между состояниями в валентных зонах полупроводникового кристалла, а не между дискретными уровнями. Длина волны в пределах 0,75¸30 мкм при мощности до 0,5 Вт.

8. Основными характеристиками лазерного излучения являются:

    Пространственная и временная когерентность излучения . Время когерентности достигает 10-3 с. Это соответствует длине когерентности примерно 105 м. Хорошая монохроматичность излучения . Примесные уровни значительно уже уровней основного вещества и потому спектральная ширина излучения может не превышать 10-11¸10-10 м. Малая расходимость пучка :

0,5¸10 мрад для газовых лазеров;

0,2¸5 мрад для твердотельных лазеров.

    Высокая плотность мощности в сфокусированном пучке (до 1010 Вт/м2).

Инверсия населённостей

в физике, состояние вещества, при котором более высокие уровни энергии составляющих его частиц (атомов, молекул и т. п.) больше «населены» частицами, чем нижние (см. Населённость уровня). В обычных условиях (при тепловом равновесии) имеет место обратное соотношение: на верхних уровнях находится меньше частиц, чем на нижних (см. Больцмана статистика).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Инверсия населённостей" в других словарях:

    - (от лат. inversio переворачивание, перестановка), неравновесное состояние в ва, при к ром для составляющих его ч ц (атомов, молекул и т. п.) выполняется неравенство: N2/g2>N1/g1, где N2 и N1 населённости верх. и ниж. уровней энергии, g2 и g1 их… … Физическая энциклопедия

    Современная энциклопедия

    Инверсия населённостей - (от латинского inversio переворачивание, перестановка), неравновесное состояние вещества, при котором в отличие от обычного состояния теплового равновесия количество составляющих вещество частиц (атомов, молекул), находящихся на более высоких… … Иллюстрированный энциклопедический словарь

    ИНВЕРСИЯ НАСЕЛЁННОСТЕЙ - неравновесное состояние вещества, при котором населённость (концентрация) составляющих его частиц (электронов, атомов, молекул и т.п.) на возбуждённых (верхних) уровнях энергии выше населённости равновесного (нижнего) уровня; является необходимым … Большая политехническая энциклопедия

    Неравновесное состояние вещества, при котором населённость верхнего из пары уровней энергии одного типа атомов (ионов, молекул), входящих в состав вещества, превышает населённость нижнего. Инверсия населённостей лежит в основе работы лазеров и… … Энциклопедический словарь

    Неравновесное состояние в ва, при к ром населённость верхнего из пары уровней энергии одного типа атомов (ионов, молекул), входящих в состав в ва, превышает населённость нижнего. И. и. лежит в основе работы лазеров и др. приборов квантовой… … Естествознание. Энциклопедический словарь

    Одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

    Инверсия электронных населённостей одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

    Инверсия электронных населённостей одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

Инверсная заселенность – это концентрация атомов с одинаковым энергетическим со- стоянием; в термодинамическом равновесии подчиняется статистике Больцмана:

Где – концентрация атомов, состояние электронов в которых соответствует энергетическим уровням с энергией и .

Когда концентрация невозбужденных атомов больше, чем возбужденных, величина Δn = отрицательна, следовательно, населенность нормальная. Когда концентрация возбужденных атомов больше, чем невозбужденных (что обеспечивается воздействием энергии накачки), величина Δn становится положительной, то есть происходит инверсия населенностей и проходящее излучение может усиливаться за счет возбужденных атомов.

Формально условие Δn > 0 выполняется при абсолютной отрицательной температуре T < 0, поэтому состояние с инверсной населенностью иногда называют состоянием с отрицательной температурой, а среду, в которой осуществлено состояние с инверсной населенностью – активной средой.

В полупроводниковых лазерах инверсия между населенностями энергетических уровней зоны проводимости и валентной зоны достигается инжекцией носителей при положительном смещении p-n-перехода.

Лазерное усиление

Лазерное усиление - это усиление оптического излучения, основанное на использовании индуцирующего излучения – при воздействии кванта излучения на атом в возбужденном состоянии, происходит переход электрона из состояния с энергией в состояние с энергией , сопровождаемый испусканием кванта излучения c энергией, равной энергии вынуждающего кванта hν = – .

В среде с достаточной концентрацией возбужденных атомов при пропускании через нее излучения, можно получить режим усиления, если количество образовавшихся фотонов существенно больше потерь на поглощение и рассеяние.

Инжекционный лазер представлен на рисунке 1.3

Рис. 1.3.Схема устройства полупроводникового инжекционного лазера (лазерного диода)

На рис.1. 4 представлено положение уровня Ферми в собственном и примесном полупроводниках. Одно из важных свойств уровня Ферми заключается в том, что в системе, состоящей из полупроводников n- и p-типа и если к ним не приложено напряжение, уровни Ферми у них выравниваются (рис.1. 4 а). А если они находятся под разными потенциалами, то уровни Ферми в них сдвигаются на величину разности потенциалов (рис.1. 4. б).



Рис.1. 4. Энергетическая диаграмма инжекционного полупроводникового лазера: p-n переход без приложенного внешнего напряжения (а); p-n переход при приложении внешнего напряжения в прямом направлении (б). d - ширина p-n перехода, l - реальная ширина области, обеспечивающей работу лазера.

В этом случае в зоне p-n перехода создаётся инверсная населённость и электроны совершают переход из зоны проводимости в валентную зону (рекомбинируют с дырками). При этом испускаются фотоны. По такому принципу работает светодиод. Если для этих фотонов создать обратную положительную связь в виде оптического резонатора, то в области p-n перехода при больших значениях внешнего приложенного напряжения можно получить лазерную генерацию. При этом процесс образования и рекомбинации неравновесных носителей происходит хаотично и излучение обладает малой мощностью и является некогерентным и немонохроматическим. Это соответствует светодиодному режиму работы полупроводникового излучателя. При увеличении тока выше порогового значения излучение становится когерентным, его спектральная ширина сильно сужается, а интенсивность резко возрастает – начинается лазерный режим работы полупроводникового излучателя. При этом также увеличивается степень линейной поляризации генерируемого излучения.

На рис.1. 5 схематично представлена конструкция полупроводникового лазера и распределение интенсивности выходного излучения. Как правило, в таком лазере резонатор создаётся полировкой двух диаметрально противоположных сторон кристалла, перпендикулярных плоскости p-n перехода. Эти плоскости делаются параллельными и полируются с высокой степенью точности. Выходную поверхность можно рассматривать как щель, через которое проходит излучение. Угловая расходимость излучения лазера определяется дифракцией излучения на этой щели. При толщине p-n перехода в 20 мкм и ширине – 120 мкм, угловая расходимость соответствует приблизительно 60 в плоскости XZ и 10 – в плоскости YZ.

Рис.1. 5. Принципиальная схема лазера на p-n переходе. 1-область p-n перехода (активный слой); 2-сечение лазерного пучка в плоскости ХY.

В современных полупроводниковых лазерах широко используются так называемые полупроводниковые гетероструктуры, в разработку которых значительный вклад внес академик РАН Ж. И. Алферов (Нобелевская премия 2000 года). Лазеры на основе гетероструктур обладают лучшими характеристиками, например, большей выходной мощностью и меньшей расходимостью. Пример двойной гетероструктуры приведен на рис. 1. 6, а её энергетическая схема – на рис. 1. 7.

Рис. 1.6. Полупроводниковая двойная гетероструктура. 1-проводящий металлизированный слой для создания электрического контакта; 2-слой GaAs (n); 3-слой Al0.3Ga0.7As (n); 4-слой, соответствующий зоне инжекции носителей заряда (p-n-переход); 5-слой Al0.3Ga0.7As (p); 6-слой GaAs (p); 7-непроводящий слой оксида металла для ограничения тока через p-n-переход, формирующий зону генерации излучения; 8,9-прилегающие слои для создания электрического контакта; 10-подложка с теплоотводом.

Рис. 1.7 .Энергетическая схема двойной гетероструктуры, ось Y и номера слоёв соответствуют рис. 1. 6. ΔЕgc-ширина запрещённой зоны; ΔЕgv-ширина запрещённой зоны p-n-перехода.

Рис. 1. 8. Полупроводниковый лазер с гетероструктурой: l - длина резонатора

Активная среда

Активная среда– вещество, в котором создается инверсная заселенность. В разных типах лазеров она может быть твердой (кристаллы рубина или алюмоиттриевого граната, стекло с примесью неодима в виде стержней различного размера и формы), жидкой (растворы анилиновых красителей или растворы солей неодима в кюветах) и газообразной (смесь гелия с неоном, аргон, углекислый газ, водяной пар низкого давления в стеклянных трубках). Полупроводниковые материалы и холодная плазма, продукты химической реакции тоже дают лазерное излучение. Лазеры получают названия в зависимости от используемой активной среды.

Хотя полупроводниковые лазеры и являются твердотельными, их принято выделять в особую группу. В этих лазерах когерентное излучение получается вследствие перехода электронов с нижнего края зоны проводимости на верхний край валентной зоны.

Существует два типа полупроводниковых лазеров.

Первый имеет пластину беспримесного полупроводника, где в качестве полупроводников используются арсенид галлия GaAs, сульфид кадмия CdS или селенид кадмия CdSe

Второй тип полупроводникового лазера - так называемый инжекционный лазер – состоит из примесных полупроводников, у которых концентрация донорных и акцепторных примесей составляет 1018-1019 . Для инжекционных лазеров применяют главным образом арсенид галлия GaAs.

Условие создания инверсной населенности для полупроводников на частоте v имеет вид:

∆F= - >hv

То есть, чтобы излучение в полупроводниковом монокристалле усиливалось, расстояние между уровнями Ферми для электронов и дырок должно быть больше энергии кванта света hv. Чем меньше частота, тем при меньшем уровне возбуждения достигается инверсная населенность.

Система накачки

Накачка создает инверсную заселенность в активных средах, причем для каждой среды выбирается наиболее удобный и эффективный способ накачки. В твердотельных и жидкостных лазерах используют импульсные лампы или лазеры, газовые среды возбуждают электрическим разрядом, полупроводники – электрическим током.

В полупроводниковых лазерах используется накачка электронным пучком (для полупроводниковых лазеров из беспримесного полупроводника) и подачей прямого напряжения (для инжекционных полупроводниковых лазеров).

Накачка электронным пучком может быть поперечной (рис. 3.1) или продольной (рис. 3 .2). При поперечной накачке две противоположные грани полупроводникового кристалла отполированы и играют роль зеркал оптического резонатора. В случае продольной накачки применяются внешние зеркала. При продольной накачке значительно улучшается охлаждение полупроводника. Пример такого лазера - лазер на сульфиде кадмия, генерирующий излучение с длиной волны 0,49 мкм и имеющий КПД около 25%.

Рис. 3.1 - Поперечная накачка электронным пучком

Рис. 3.2 - Продольная накачка электронным пучком

В инжекционном лазере имеется p-n-переход, образованный двумя вырожденными примесными полупроводниками. При подаче прямого напряжения понижается потенциальный барьер в p-n-переходе и происходит инжекция электронов и дырок. В области перехода начинается интенсивная рекомбинация носителей заряда, при которой электроны переходят из зоны проводимости в валентную зону и возникает лазерное излучение (рис. 3.3).

Рис. 3.3 - Принцип устройства инжекционного лазера

Накачка обеспечивает импульсный или непрерывный режим работы лазера.

Резонатор

Резонаторпредставляет собой пару зеркал, параллельных друг другу, между которыми помещена активная среда. Одно зеркало («глухое») отражает весь падающий на него свет; второе, полупрозрачное, часть излучения возвращает в среду для осуществления вынужденного излучения, а часть выводится наружу в виде лазерного луча. В качестве «глухого» зеркала нередко используют призму полного внутреннего, в качестве полупрозрачного – стопу стеклянных пластин. Кроме того, подбирая расстояние между зеркалами, резонатор можно настроить так, что лазер станет генерировать излучение только одного, строго определенного типа (так называемую моду).

Простейшим оптическим резонатором, широко применяемым во всех видах лазеров, служит плоский резонатор (интерферометр Фаби – Перо), состоящий из двух плоскопараллельных пластин, расположенных на расстоянии друг от друга.

В качестве одной пластины можно использовать глухое зеркало, коэффициент отражения которого близок к единице. Вторая пластина должна быть полупрозрачной, чтобы генерируемое излучение могло выйти из резонатора. Для увеличения коэффициента отражения поверхностей пластин на них обычно наносятся многослойные диэлектрические отражающие покрытия. Поглощение света в таких покрытиях практически отсутствует. Иногда отражающие покрытия наносятся непосредственно на плоскопараллельные торцы стержней активной среды. Тогда необходимость в выносных зеркалах отпадает.

Рис. 4.1. Типы оптических резонаторов: а – плоский, б – призменный, в – конфокальный, г – полуконцентрический, д – составной, е – кольцевой, ж,з – скрещенные, и – с брэгговскими зеркалами. Заштрихованы активные элементы.

В качестве глухого зеркала в оптическом резонаторе можно использовать прямоугольную призму (рис. 4.1, б). Лучи света, падающие перпендикулярно к внутренней плоскости призмы, в результате двукратного полного отражения выходят из нее в направлении, параллельном оси резонатора.

Вместо плоских пластин в оптических резонаторах могут использоваться вогнутые полупрозрачные зеркала. Два зеркала с одинаковыми радиусами кривизны, расположенные так, что их фокусы находятся в одной точке Ф (рис. 4.1, в), образуют конфокальный резонатор. Расстояние между зеркалами l=R. Если это расстояние уменьшить в два раза так, чтобы фокус одного зеркала оказался на поверхности другого, то получится софокусный резонатор.

Для научных исследований и различных практических целей применяются более сложные резонаторы, состоящие не только из зеркал, но и других оптических элементов, позволяющих контролировать и изменять характеристики лазерного излучения. Например, рис. 4. 1, д. – составной резонатор, в котором суммируется генерируемое излучение от четырех активных элементов. В лазерных гироскопах используется кольцевой резонатор, в котором два луча распространяются в противоположных направлениях по замкнутой ломаной линии (рис. 4. 1,е).

Для создания логических элементов вычислительных машин и интегральных модулей используются многокомпонентные скрещенные резонаторы (рис. 4. 1. ж,з). Это по существу совокупность лазеров, допускающих их селективное возбуждение и объединенных вместе сильной оптической связью.

Особый класс лазеров составляют лазеры с распределенной обратной связью. В обычных оптических резонаторах обратная связь устанавливается из-за отражения генерируемого излучения от зеркал резонатора. При распределении обратной связи отражение происходит от оптически неоднородной периодической структуры. Примером такой структуры служит дифракционная решетка. Она может быть создана механическим путем (рис. 4. 1, и) или селективным воздействием на однородную среду.

Используются и другие конструкции резонаторов.

По определению, к элементам резонатора необходимо относить также пассивные и активные затворы, модуляторы излучения, поляризаторы и другие оптические элементы, применяемые при получении генерации.

Потери в резонаторе

Генерацию излучения упрощенно можно представить так: рабочее вещество лазера помещают в резонатор и включают систему накачки. Под действием внешнего возбуждения создается инверсная населенность уровней, а коэффициент поглощения в некотором спектральном интервале становится меньше нуля. В процессе возбуждения, еще до создания инверсной населенности, рабочее вещество начинает люминесцировать. Проходя через активную среду, спонтанное излучение усиливается. Величина усиления определяется произведением коэффициента усиления на длину пути света в активной среде. В каждом типе резонаторов имеются такие избранные направления, что лучи света вследствие отражения от зеркал проходят через активную среду в принципе бесконечное число раз. Например, в плоском резонаторе через активную среду могут пройти только лучи, распространяющиеся параллельно оси резонатора. Все остальные лучи, падающие на зеркала под углом к оси резонатора, после одного или нескольких отражений выходят из него. Так появляются потери.

Выделяют несколько видов потерь на резонаторе:

1.Потери на зеркалах.

Поскольку часть генерируемого в среде излучения необходимо вывести из резонатора, применяемые зеркала (по крайней мере одно из них) делаются полупрозрачными. Если коэффициенты отражения зеркал по интенсивности равны R1 и R2 , то коэффициент полезных потерь на выход излучения из резонатора в расчете на единицу длины будет задаваться формулой:

2.Геометрические потери

Если луч распространяется внутри резонатора не строго нормально поверхностям зеркал, то после определенного числа отражений он достигнет краев зеркал и покинет резонатор.

3. Дифракционные потери.

Рассмотрим резонатор, образованный двумя плоскопараллельными круглыми зеркалами радиусом a. Пусть на зеркало 2 падает параллельный пучок излучения с длиной волны λ. Пучок отражается от зеркала и одновременно дифрагирует в угол порядка d ϕ ≈ λ a . Числом Френеля для данного резонатора называется число проходов между зеркалами, когда итоговая расходимость пучка достигнет угла выхода излучения за края зеркал ϕ=a/L

4.Рассеяние на неоднородностях активной среды.

Если резонатор заполнен активной средой, то возникают дополнительные источники потерь. При прохождении излучения через активную среду часть излучения рассеивается на неоднородностях и посторонних включениях, а также ослабляется в результате нерезонансного поглощения. Под нерезонансным поглощением понимают поглощение, связанное с оптическими переходами между уровнями, не являющимися рабочими для данной среды. Сюда же могут быть отнесены потери, связанные с частичным рассеянием и поглощением энергии в зеркалах.

Для того, чтобы поучить усиление падающего света, необходимо каким-либо образом обратить населенность уровней. Т.е. сделать так, чтобы большему значению энергии соответствовало и большее число атомов . При этом говорят, что совокупность атомов имеет инверсную (обратную) населенность уровней.

Отношение числа атомов на уровнях и равно:

В случае инверсной населенности . Отсюда следует, что показатель экспоненты должен быть больше нуля ‑ . Но . Следовательно, чтобы показатель экспоненты был больше нуля, необходимо чтобы температура была отрицательной ‑ .

Поэтому состояние с инверсной населенностью уровней называют иногда состоянием с отрицательной температурой. Но это выражение носит условный характер, потому что само понятие температуры применимо к равновесным состояниям, а состояние с инверсной населенностью является неравновесным состоянием.

В случае инверсной населенности, свет, проходя через вещество, будет усиливаться. Формально это соответствует тому, что в законе Бугера коэффициент поглощения будет отрицательным. Т.е. совокупность атомов с инверсной населенностью уровней можно рассматривать как среду, с отрицательным коэффициентом поглощения.


Итак, для усиления света веществом нам необходимо создать инверсную населенность уровней этого вещества. Посмотрим, как это делается на примере рубинового лазера.

Рубин представляет собой окись алюминия , в которой некоторые атомы алюминия заменены атомами хрома . Этот рубин облучают широким спектром частот электромагнитных волн. При этом ионы хрома переходят в возбужденное состояние (см. рис. 4). Ионы алюминия в этом деле заметной роли не играют.

Состояние с энергией представляет собой целую полосу, вследствие взаимодействия ионов с кристаллической решеткой. С уровня для ионов хрома возможны два пути.

1. Возвращение в исходное состояние с энергией с испусканием фотона.

2. Переход в метастабильное состояние с энергией путем теплового взаимодействия с ионами кристаллической решетки алюминия.

Время жизни на уровне как и обычно, равно времени жизни в возбужденном состоянии ‑ . Спонтанный переход на уровень обозначен стрелкой , а переход на метастабильный уровень обозначен стрелкой .

Расчеты и эксперимент показывают, что вероятность перехода много больше вероятности перехода . Кроме того, переход из метастабильного состояния с энергией в основное состояние запрещен правилами отбора (правила отбора не абсолютно строги, они указывают лишь большую или меньшую вероятность перехода).



Поэтому время жизни на метастабильном уровне составляет , что в сто тысяч раз превышает время жизни на уровне .

Таким образом, при достаточно большом числе атомов хрома может возникнуть инверсная населенность уровня ‑ число атомов на уровне превысит число атомов на уровне , т.е. может получиться то, что мы желаем.

Спонтанный переход с уровня на основной уровень обозначен стрелкой , Возникающий при этом переходе фотон может вызвать вынужденное излучение следующего фотона, который обозначен стрелкой . Этот еще одного и т.д. Т.е. образуется каскад фотонов.

Рассмотрим теперь техническое устройство рубинового лазера.

Он представляет собой стержень, диаметром порядка и длиной . Торцы стержня строго параллельны друг другу и тщательно отшлифованы. Один торец представляет собой идеальное зеркало, второй ‑ полупрозрачное зеркало, пропускающее около падающей энергии.

Вокруг рубинового стержня устанавливают несколько витков лампы накачки ‑ ксеноновой лампы, работающей в импульсном режиме.

Итак, в теле стержня образовались вынужденные фотоны. Те фотоны, направление распространения которых составляет малые углы с осью стержня, будут многократно проходить стержень и вызывать вынужденное излучение метастабильных атомов хрома. Вторичные фотоны будут иметь то же направление, что и первичные, т.е. вдоль оси стержня. Фотоны другого направления не разовьют значительный каскад и выйдут из игры. При достаточной интенсивности пучка часть его выходит наружу.

Рубиновые лазеры работают в импульсном режиме с частотой повторения несколько импульсов в минуту. Кроме того, внутри них происходит выделение большого количества тепла, поэтому их приходится интенсивно охлаждать.

Рассмотрим теперь работу газового лазера, в частности гелий-неонового.

Он состоит из кварцевой трубки, внутри которой находится смесь газов гелия и неона. Гелий находится под давлением , а неон под давлением , при этом атомов гелия приблизительно в 10 раз больше, чем атомов неона. Основными излучающими атомами здесь являются атомы неона, а атомы гелия играют вспомогательную роль для создания инверсной населенности атомов неона.

Подкачка энергии в этом лазере осуществляется за счет энергии тлеющего разряда. При этом атомы гелия возбуждаются и переходят в возбужденное состояние ( см. рис. 5) . Это состояние для атомов гелия является метастабильным, т.е. обратный оптический переход запрещен правилами отбора. Поэтому атомы гелия могут перейти в невозбужденное состояние, передавая энергию атомам неона при столкновениях. Вследствие этого атомы неона приходят в возбужденное состояние , которое близко состоянию для гелия. Атомы неона возбуждаются как за сет энергии тлеющего разряда, так и за счет столкновений с атомами гелия.

Кроме того разгружают уровень , подбирая такие размеры трубки, чтобы атомы неона, находясь на уровне , при соударениях со стенками передавали бы им энергию, переходя на основной уровень.

Вследствие этих процессов происходит инверсная населенность уровня для неона. С уровня возможен переход на уровень .

Основным конструктивным элементом этого лазера является кварцевая газоразрядная трубка, диаметром около . В ней расположены электроды для создания электрического разряда. По торцам трубки расположены плоско-параллельные зеркала, одно из которых, переднее, полупрозрачное. Условия для усиления возникают только у тех фотонов, которые вылетают параллельно оси лазера.

Рабочей частотой лазера является переход . Правилами отбора разрешено около тридцати переходов. Для выделения одной частоты зеркала делают многослойными, настроенными на отражение только одной определенной волны. Широко распространены лазеры, излучающие волны с длиной . Но наиболее интенсивным является переход с длиной волны , т.е. в инфракрасной области спектра.

Газовые лазеры работают в непрерывном режиме и не нуждаются в интенсивном охлаждении.

Отличительными особенностями лазерного излучения являются.

1. Временная и пространственная когерентность.

2. Строгая монохроматичность .

3. Большая мощность

4. Узость лазерного пучка.

Лекция 15. (2 часа)

Принцип минимума потенциальной энергии:

Любая замкнутая система стремится перейти в такое состояние, в котором ее потенциальная энергия минимальна. Такое состояние является энергетически выгодным и наиболее устойчивым.

В соответствии с этим принципом, количество атомов активного вещества лазера, находящихся на нижнем энергетическом уровне, всегда больше, чем количество возбужденных атомов. При отключенной системе накачки населенность нижнего энергетического уровня максимальна, а наверху, на возбужденном уровне, атомов вообще нет или их крайне мало.

При включении накачки положение начинает меняться: часть атомов переходит в категорию «возбужденные». Чем больше мощность накачки, тем больше становится населенность верхнего уровня и меньше – нижнего.

Чем больше становится возбужденных атомов, тем больше вероятность переходов обратного направления, за счет спонтанного и индуцированного излучения. Но фотонные лавины возникать еще не могут.

Мы обсуждаем двухуровневую систему накачки: система накачивает атомы энергией, переводя их в возбужденное состояние, а они, спонтанно или через индуцированное излучение, соскакивают обратно, вниз.

Теория и практика показали, что максимум достижимого при работе двухуровневой системы накачки – динамическое равновесие при достижении численного равенства населенностей верхнего и нижнего энергетических уровней.

Но для работы лазера этого мало! «Наверху» атомов должно быть больше, чем «внизу».

Инверсная населенность - состояние активного вещества, при котором атомов, находящихся на возбужденном энергетическом уровне, больше , чем на нижнем, основном уровне .

Преодолеть ограниченные возможности двухуровневой системы накачки удалось с помощью системы трехуровневой. Появились и системы, имеющие большее число уровней.

Естественной для атомов является длительность их пребывания в возбужденном состоянии порядка τ 1 = 10 -8 с. Преодолеть такую быстроту возврата возбужденных атомов в устойчивое основное состояние удалось благодаря тому, что в квантовых системах могут существовать метастабильные состояния, с временем жизни τ , много большим, чем τ 1 = 10 -8 с. Метастабильное состояние (от греч. μετα «через» и лат. stabilis «устойчивый») – состояние квазиустойчивого равновесия, в котором система может находиться длительное время.

Длительность метастабильного состояния возбужденных атомов может достигать  2 = 10 -3 с. Обратите внимание: τ 2 > τ 1 в 100000 раз; и за такое время вполне удается создавать инверсную населенность, «перехитрив» принцип минимума потенциальной энергии. На рис. 3 представлена схема энергетических уровней трехуровневой системы накачки.

Рис. 3 Схема трехуровневой системы накачки.

Трехуровневая система накачки переводит атомы активного вещества на уровни Е 2 и Е 3 . При этом активное вещество имеет в окрестностях уровня Е 3 множество близко расположенных энергетических уровней с коротким временем жизни возбужденного состояния τ 3 . На схеме они не показаны; Е 3 – среднее значение их энергии.

Кванты, близкие к Е 3 , имеют повышенную вероятность быть поглощенными: любой квант энергии системы накачки на каком-нибудь из этих многих уровней пригодится, будет поглощен. Суммарный эффект: система накачки эффективно работает на повышение населенности энергетического уровня Е 3 благодаря тому, что он «широк по вертикали» за счет семейства близких уровней.

На схеме рис. 3 наклонной стрелкой показан переход с уровня Е 3 на уровень Е 2 , что символизирует безизлучательный переход возбужденных атомов на уровень Е 2 , благо обстановка позволяет: вместо большого перепада Е 3 – Е 2 имеется нечто в роде лесенки близких уровней.

Вклад «узкого» уровня Е 2 в создание своей же инверсной населенности есть, но он – гораздо скромнее.