Пайка сварочным полуавтоматом. Методы пайки Пайка сварочных швов в короткие сроки

В современном нестабильном мире и агрессивной внешней среде человек особенно тщательно старается сохранить пространство вокруг себя, сделать более надежным свой «маленький» мир. Автомобиль давно уже стал необходимым элементом повседневной жизни, но, выезжая на дорогу, мы попадаем в зону повышенной опасности. Приобретая автомобиль, покупатель большое внимание уделяет проблемам безопасности. Любой участник движения желает не только избежать возможных аварий на дорогах, но и остаться в живых, если авария все-таки произойдет.

С 1997 г. Европейский комитет EuroNCAP занимается проведением независимых краш-тестов безопасности автомобиля, проверяет машины в разных нестандартных аварийных ситуациях, ставит оценку его безопасности для водителей и пассажиров, составляет рейтинг безопасности автомобилей «Safety assist».

Все эти усилия по разбиванию авто направлены на проверку эффективности пассивных систем защиты автомобилей. И ненапрасно, так как при аварии надежная работа этих систем может спасти жизнь водителю и пассажирам.

Производители автомобилей уделяют должное внимание безопасности пассажиров. Например, кузов Ford Fusion имеет специально сконструированный силовой каркас для поглощения энергии удара в случае столкновения, а двери усилены стальными брусьями. Кузов Audi A3 имеет повышенную жесткость и энергопоглощающую обшивку для пространства ног пассажиров, что при ударе обеспечит водителю и пассажирам надежную защиту.

Новые требования — новые стали

Для повышения конкурентоспособности производители стараются создать экономичные и безопасные автомобили. Новые требования, предъявляемые к современному кузову автомобиля, продиктованы желанием получить более экономичный, а значит, более легкий кузов; в то же время требования к пассивной безопасности должны быть на самом высоком уровне. Все это заставляет автопроизводителей двигаться вперед.

Новые конструкции кузова, инновационные технологии

Новые концепции построения кузова автомобиля напрямую связаны с инновационными технологиями. Как правило, это легкая конст­рукция с использованием ультравысокопрочной стали, легких металлов - сплавов алюминия и магния, применение армированного волокном пластика или разнообразные сочетания всех этих материалов в одной конструкции кузова. Все это продиктовано как экономическими задачами, решаемыми на массовом производстве, так и желанием потребителей получить экономичный и безопасный автомобиль.

Сегодня есть два пути, по которым идут производители: технологии гибридных соединений, легких сплавов, с применением клея, который позволяет распределить нагрузки в соединениях по всей поверхности контакта, и механическо-тепловые методы соединения. Целью является поиск процессов, легко осуществимых в производстве и воспроизводимых впоследствии при восстановлении кузова после ДТП. Сейчас невозможно сказать, какой из способов получит более широкое распространение, поскольку поставщики металлопроката в содружестве с автопроизводителями ведут постоянные разработки новых сплавов и методов обработки металлов с целью получения требуемых характеристик. Часто новые сплавы и новые методы обработки металла открывают новые возможности применения.

Виды сталей и сплавов, используемых в конструкции кузова автомобиля

Сталь

Мягкая сталь до 200 Н/мм2

Высокопрочная сталь HSS 210-450 Н/мм2

Сверхпрочная сталь EHS 400–800 Н/мм2

Алюминиевые сплавы

Алюминий магний AlMg около 300 Н/мм2

Алюминий кремний AlSi около 200 Н/мм2

Новые стали - новые технологии ремонта

MIG-пайка (MIG brazing) - новая технология соединения, называемая также сварко-пайкой, – применяется для соединения высокопрочных сталей автомобильных панелей кузова. Высокопрочные стали, такие как Boron, получили свои высокие показатели по жесткости благодаря термической обработке. Но при обычной сварке полуавтоматом температура сварочной ванны составляет 1500–1600°С, что приводит к изменениям характеристик соединяемых металлов и, как следствие, к изменениям всей конст­рукции кузова. В итоге мы получаем «кузов-инвалид», несущий скрытую угрозу.

Процесс MIG-пайки является процессом пайки твердым припоем. Сварочный процесс MIG-пайки (Metal-Inert-Gas), как понятно из названия, происходит в среде инертного газа аргона. Газ защищает дугу, расплавленный припой и кромки деталей от влияния окружающего воздуха. Сам процесс прост, как и MIG/MAG-сварка, и применим в условиях восстановления кузова. Благодаря более низкой температуре плавления припоя - приблизительно 1000°C - диффузия металлов не происходит, а вследствие относительно небольшой температуры ванны сохраняются заложенные свойства соединяемых сталей. Этот метод практически исключает деформацию соединяемых листов.

Особенно хочется отметить, что благодаря более низкой температуре плавления припоя происходит минимальное выгорание цинка во время пайки (цинк плавится при 419°C, испаряется при 906°C). Полученный шов имеет высокую устойчивость к коррозии. Проволоки для пайки сделаны из сплава на основе меди с добавками кремния (CuSi3) или алюминия (CuAl8). Припой вступает в соединение с цинком, и в результате получается шов с высокими антикоррозионными свойствами.

Процесс сварки-пайки происходит при более низких настройках тока, гораздо ниже, чем при сварке обычной мягкой стали, что необходимо для получения низкой температуры ванны. При этом используется метод толкания: горелка ведется под тупым углом по направлению сварочного шва. Горелку необходимо отклонить от вертикали не более чем на 15°, чтобы газ не выдувался из зоны ванны и защищал ее. Расход газа должен быть в пределах 20–25 л/мин, для этого необходимо использовать редуктор с расходомером.

При сварке-пайке встык двух листов необходимо создать зазор между ними, примерно равный толщине свариваемого листа (около 1–1,2 мм), и оставить место для заполнения припоем. Скорость подачи проволоки выше, чем обычно используется при сварке.

Насколько крепок шов сварки-пайки вы можете проверить сами; у нас получилось примерно около 30 циклов сгибания места шва. Результат можно посмотреть на фотографиях: шов остался цел, соединение получилось крепче основной пластины стали. Испытание проводилось с простыми стальными пластинами, первая проба с высокопрочной сталью так и не сломалась; видимо, для этого необходимо специальное устройство, а не просто тиски.

Новые технологии ремонта - новое оборудование для ремонта

Качество ремонта аварийного кузова требует не только бескомпромиссной точности восстановления конструкции кузова в соответствии с данными производителя, но и использования тех методов, которые позволят не нарушить прочностные характеристики конструкции. Если вы собираетесь производить ремонт в соответствии с требованиями автопроизводителя, необходимо применять современные методы ремонта, которые решаются с помощью OEM (Original Equipment Manufacturer) оборудования.

Сейчас для кузовных мастерских стали доступны полуавтоматы MIG/MAG с возможностью производить сварку-пайку. Французский производитель GYS предлагает две модели с этой функцией: TRIMIG 205-4S и DUOGYS AUTO. Оба аппарата созданы специально для кузовного ремонта. Наибольший интерес вызывает модель DUOGYS AUTO, именно ее мы и рассмотрим подробней.

Профессиональный полуавтоматический сварочный аппарат DUOGYS AUTO идеален для кузовного ремонта на сервисных станциях, работающих с современными кузовами. Он предназначен для работы со сталью, алюминием и сварки-пайки высокопрочных сталей при помощи проволоки CuSi3 или CuAl8.

■ Проволока CuSi3 применяется по технологическому требованию OPEL и Mercedes.

■ Проволока CuAl8 применяется по технологическому требованию Peugeot, Citroеn, Renault.

■ Алюминиевая проволока AlSi12 применяется для сварки автомобильных листов толщиной 0,6–1,5 мм.

■ Алюминиевая проволока AlSi12 применяется для сварки автомобильных листов толщиной более 1,5 мм.


Этот аппарат оснащен двумя четырехроликовыми механизмами с возможностью подключения горелки со встроенным подающим механизмом Spool Gun. В комплекте с ним идут две трехметровые горелки 150 А: одна для работы со сталью, а другая для сварки-пайки, и Spool Gun с четырехметровым рукавом. Благодаря синергетическому режиму аппарат легко перестраивается под разные режимы работы.

DUOGYS AUTO имеет два режима настройки: автоматический и ручной. В автоматическом режиме необходимо выбрать тип и диаметр сварочной проволоки, поставить нужный уровень тока на семипозиционном переключателе, а скорость подачи проволоки автоматически подстроится согласно заданным условиям. При этом предусмотрена возможность для тонкой подстройки скорости. При необходимости всегда можно перейти в ручной режим и работать как с обычным полуавтоматом.

Аппарат имеет два полезных режима. Точечный режим SPOT удобен для операции прихвата. Режим задержки DELAY удобен для сварки тонких листов стали и алюминия, ограничивая при этом риск прожога или деформации свариваемых листов.

Для кузовных станций с небольшой проходимостью можно рекомендовать профессиональный сварочный полуавтомат TRIMIG 205-4S. Он имеет точно такой же генератор тока, как и его старший собрат DUOGYS AUTO, но только один встроенный двухроликовый приводной механизм и потребует дополнительного времени на переустановку катушек со сварочной проволокой.

В остальном это такой же аппарат, с его помощью можно выполнить сварку сталей, сварку-пайку, а подключив горелку со встроенным механизмом подачи проволоки Spool Gun, и сварку алюминия.

Қазақстан Республикасының Министерство

Білім және ғылым образования и науки

министрлігі Республики Казахстан

Д. Серікбаев атындағы ВКГТУ

ШҚМТУ им. Д. Серикбаева

УТВЕРЖДАЮ

декан факультета МиТ

_______________2014 г.

Пісіру мен дәнекерлеу әдістері

Зертханалық жұмыстар бойынша әдістемелік

нұсқаулар

Специальные методы сварки и пайка

Методические указания по лабораторным

(практическим) работам

Специальность: 5В071200, «Машиностроение»

Специализация: «Технология и оборудование сварочного производства»

Усть-Каменогорск

Методические указания разработаны на кафедре машиностроения и технологии конструкционных материалов на основании ГОСО РК 3.08.338 – 2011 для студентов специальности 5В071200 «Машиностроение».

Обсуждено на заседании кафедры «М и ТКМ»

Зав. кафедрой

Протокол № от 2014г.

Одобрено методическим советом факультета машиностроения и транспорта

Председатель

Протокол № ____ от _______________ 2014г.

Разработал

Должность профессор

Нормоконтролер

В методических указаниях представлены полные описания лабораторно-практических работ .

Каждая работа состоит из наименования, целей и задач, теоретической части изучаемого вопроса и рекомендаций по практическому выполнению с указанием итоговой таблицы или формы графика. Кроме того, указаны требования к отчету по работе и дан перечень основных вопросов для самопроверки.


1 ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ГАЗОВОЙ СВАРКИ

1.1 Цель работы

Целью лабораторной работы является изучение:

Процесса сварки;

Техники сварки;

Устройства сварочного поста;

Назначения сварочных приборов и приспособлений.

1.2 Оборудование, приспособления, инструмент

Присадочная проволока;

Газогенератор;

Газовая горелка;

Газовый резак;

Спецодежда.

При газовой сварке для расплавления кромок соединяемых частей и вводимого присадочного материала используют тепло, выделяемое при сгорании горючих газов (ацетилен, пропан, бутан, пары керосина, водород и т. д.) в технически чистом кислороде. При этом максимальные температуры пламени равны соответственно 3100, 2750, 2500, 2400, 21000С. Наибольшее распространение получила ацетилено-кислородная сварка в связи с ее экономичностью и эффективностью при максимальном качестве соединений.

1.3.1 Кислород

Для сварочных работ используют газообразный кислород, который получают из воздуха методом его глубокого охлаждения (сжижения). Кислород поставляют к месту потребления в стальных баллонах голубого цвета под давлением 15МПа или в жидком виде – в специальных сосудах с хорошей теплоизоляцией. Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода.

Кислород имеет высокую химическую активность, образуя соединения со всеми химическими элементами, кроме инертных газов. Реакции соединения с кислородом протекают с выделением большого количества тепла.

При соприкосновении чистого газообразного кислорода с органическими веществами, маслами, жирами может произойти их самовоспламенение. Поэтому всю кислородную аппаратуру необходимо тщательно обезжиривать. Кислород способен образовывать в широких пределах взрывчатые смеси с горючими газами

1.3.2 Ацетилен (С2Н2)

Ацетилен является основным горючим газом для газовой сварки и резки металлов , температура его пламени при сгорании в смеси с технически чистым кислородом достигает 31500С (при избытке кислорода 34500С).

Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим запахом.

При использовании ацетилена необходимо учитывать его взрывоопасные свойства. Температура самовоспламенения ацетилена колеблется в пределах 240-6300С и зависит от давления и присутствия в нем различных веществ.

Повышение давления существенно снижает температуру самовоспламенения ацетилена.

Ацетилен с воздухом образует взрывоопасные смеси в пределах от 2,2 до 81% ацетилена по объему при нормальном атмосферном давлении, а с технически чистым кислородом – в пределах от 2,3 до 3% ацетилена. Наиболее взрывоопасны смеси, содержащие 7 – 13% ацетилена.

Присутствие окиси меди снижает температуру воспламенения ацетилена до 2400С. Поэтому категорически запрещается при изготовлении ацетиленового оборудования применение сплавов, содержащих более 70% меди.

Взрывоопасность ацетилена понижается при растворении его в жидкостях. Особенно хорошо он растворяется в ацетоне . В одном объеме технического ацетона при 200С и нормальном атмосферном давлении можно растворить до 20 объемов ацетилена. Растворимость ацетилена в ацетоне увеличивается с увеличением давления и понижением температуры.


Ацетилен получают при разложении водой карбида кальция (СаС2) по реакции

Непосредственно на рабочем месте газосварщика аустилен либо находится в баллонах белого цвета, либо получают из карбида кальция в газогенераторе.

1.3.3 Кислородно-ацетиленовое пламя

Строение аустилено-кислородного пламени показано на рисунке 1. Оно характерно также для большинства газокислородных смесей.

1 – ядро; 2 – восстановительная зона; 3 – факел пламени

Рисунок 1 – Схема строения газокислородного пламени.

Ядро 1 пламени состоит из смеси холодных газов с четко выраженными границами. В зоне 2 ацетилен сгорает в чистом кислороде при их соотношении 1:1 по реакции

Эта зона характеризуется восстановительной атмосферой за счет наличия СО и Н2 и максимальной температурой 31500С. При плавлении и сварке этой зоной процесс протекает эффективно и с минимальным окислением металла шва.

В наружной зоне продукты неполного сгорания дожигаются за счет кислорода окружающего воздуха по реакции

При этом формируется факел пламени 3, который используется для дополнительного подогрева свариваемых кромок и шва.

В зависимости от соотношения газов в смеси пламя может быть нормальным (рисунок 1), науглераживающим (ацетиленовым) и окислительным (рисунок 2).

а) – нормальное; б – науглероживающее; в - окислительное

Рисунок 2 – Виды ацетилено-кислородного пламени.

При избытке ацетилена (рисунок 2.б) ядро увеличивается, приобретает расплывчатые очертания и начинает коптить. Такое пламя используется при сварке высокоуглеродистых сталей и чугунов. При избытке кислорода ядро пламени укорачивается и заостряется. Такое пламя, несмотря на более высокую температуру в 34500С, вызывает окисление компонентов сплавов и для сварки не должно использоваться.

1.3.4 Способы сварки

В зависимости от направления перемещения горелки и присадочного прутка по шву различают левый и правый способы сварки. При левом способе (рисунок 3.а) впереди перемещается присадочный пруток, а за ним горелка. Левый способ более простой и применяется для сварки малых толщин до 3 мм.

а – левый; б – правый; 1 – присадочный пруток; 2 – газовая горелка

Рисунок 3 – Способы газовой сварки

При правом способе впереди перемещается горелка, а за ней присадочный пруток (рисунок 3.б). Правый способ сложнее, но более производительный и позволяет эффективно воздействовать на жидкую металлическую ванну (перемешивать, поддерживать, перемещать).

Вертикальные швы выполняют левым способом, а горизонтальные и потолочные – правым. Для лучшего перемешивания металла необходимо конец присадочного прутка погружать в расплавленную ванну и совершать им колебательные движения. Диаметр присадочного прутка выбирают примерно равным свариваемой толщине, но не более 4-5 мм. Присадочный пруток берут того же состава, что и основной металл. Мощность горелки выбирают из расчета 120-150 л/час на 1 мм толщины свариваемого металла. При сварке листов разной толщины мощность горелки выбирают по большей толщине.

Легированные стали и цветные металлы сваривают с применением флюсов, соответствующих составов.

1.3.5 Оборудование сварочного поста

Устройство сварочного поста может отличаться только способом поставки ацетилена:

Поставка ацетилена в баллоне;

Выработка ацетилена на месте сварки в газогенераторе.

На рисунке 17 представлен первый вариант схемы сварочного поста.

Сварка и пайка на сегодняшний день являются наиболее популярными и действенными способами соединения металлов, их сплавов. Люди, которые знают основы пайки и умеют производить монтаж каких-либо металлических изделий путем пайки, как правило, знают основы сварки, как альтернативного варианта воздействия на материал, а также его сплав. Несмотря на это сварка все же отличается от пайки. В связи с этим каждый способ достоин тщательного рассмотрения.

Сварка металлов: способы и виды

Общие сведения

Сварка представляет собой процесс получения (монтаж) неразъемного соединения путем установления межатомных связей между соединяемыми поверхностями металлов, их сплавов при общем или местном воздействии (нагреве), пластическом деформировании.

Сегодня существует достаточно много видов сварки (порядка ста). Известные виды классифицируются по физическим, технологическим, а также техническим свойствам и признакам. В зависимости от формы применяемой энергии по физическим признакам можно выделить три класса.

  • Термическая;
  • Механическая;
  • Термомеханическая.

Стоит отметить, что термический класс деталей представляет собой все виды соединения металлов и сплавов с применением тепловой энергии (плазменная, дуговая, газовая).

Механический класс представляет собой все виды сварки металлов, а также их сплавов, которые осуществляются посредством механической энергии (трением, холодная, ультразвуковая, а также сварка взрывом).

Термомеханический класс подразумевает под собой виды сварки металлов и сплавов, во время применения которых используется давление, а также тепловая энергия (диффузионная, а также контактная).

Классификация видов сварки производится по определенным техническим признакам:

  • По непрерывности процесса (прерывистая, непрерывная);
  • По способу защиты детали в области работы (в вакууме, в воздухе, под флюсом, в газе, в пене, с использование комбинированной защиты);
  • По степени механизации (механизированная, ручная, автоматическая, автоматизированная);
  • По характеру защиты детали в области действия дуги на поверхность твердых материалов (в контролируемой атмосфере, со струйной защитой);
  • По типу защитного газа (в инертных или активных газах).

Стоит обратить внимание на то, что технологические признаки сварки устанавливаются для каждого вида в отдельности. В связи с этим требуется ознакомление с наиболее популярными видами обработки, а также соответствующим оборудованием.

Дуговая сварка

Соединение металлов с применением электрической дуги позволяет добиться соединения путем плавления. Нагрев свариваемых кромок деталей производится посредством теплоты электрической дуги.

На сегодняшний день используются четыре основных вида дуговой сварки металлов:

  1. Ручная работа может производиться двумя способами: плавящимся и неплавящимся электродом. В первом случае во время работы применяются электроды, способные плавиться под воздействием электрической энергии. Подобный метод наиболее часто применяется при ручной работе. Таким образом, происходит возбуждение электрической дуги, после чего в результате этого происходит расплавление электрода и последующее расплавление кромки материала. В результате подобного воздействия электричества возникает ванна расплавленного материала. После охлаждения ванночка превращается в шов. Во втором случае с неплавящимся электродом происходит следующее: соединяемые кромки соприкасаются, после чего между электродом (графитовым или угольным) и изделием происходит возбуждение дуги; кромки изделия, а также присадочный материал нагревают до температуры плавления, в результате чего выполняется ванночка расплавленного материала (сплав). После затвердения материал (сплав) образует сварной шов. Подобный способ может воздействовать на любой цветной металл, а также его сплав.
  2. Автоматическая и полуавтоматическая сварка под флюсом может выполняться посредством механизации основных движений, которые выполняет сварщик во время ручной обработки металлов или при воздействии на его сплав.
  3. В защитном газе производится с помощью неплавящегося (вольфрамового) электрода, либо посредством применения плавящегося электрода. Сварной шов образуется в первом случае за счет расплавленных кромок. Таким образом, в случае необходимости в зону дуги подается присадочный материал. Второй случай предполагает подачу в область дуги электродной проволоки, которая в дальнейшем расплавляется, тем самым принимая участие в образовании шва деталей (также может воздействовать на сплав). Защита шва от образования на ней оксидной пленки достигается не без участия струи защитного газа, вытесняющего из рабочей области воздух.
  4. Электрошлаковая обработка металлов, а также их сплавов достигается при помощи плавления кромок соединяемого материала, а также электрода посредством тепла от электрического тока во время прохождения через шлак. Помимо всего шлак способствует защите материала от воздуха, а, соответственно, от последующего окисления.

Пайка и все, что нужно о ней знать

Пайка используется в качестве способа создания надежного соединения металлов и сплавов еще с давних времен. Металлические изделия, полученные в результате обработки, носились еще в Вавилоне, Риме, Древнем Египте, а также Греции. Безусловно, с тех пор и до нашего времени дошли лишь немногие технологические правила применения, но и данные правила сегодня далеко не всем известны. Таким образом, способы пайки следует знать каждому, кто желает или уже знает основы пайки.

Что такое пайка?

Пайка – процедура соединения материалов путем введения между паяемыми деталями припоя. Припой, выполняющий роль связующего материала, заполняет зазор между материалами, тем самым осуществляя монтаж деталей, после чего при застывании образует единый целый сплав, являющийся неразъемным соединением. Процедура позволяет воздействовать на какой-либо материал и его сплав.

Во время процедуры тиноль воздействует на металл и его сплав, производя нагрев до нужной температуры, которая выше температуры плавления основного материала. Так, припой приобретает жидкую консистенцию, после чего происходит смачивание поверхности паяемых деталей, тем самым позволяя заполнять собой зазоры между соединяемыми деталями. Далее следует растворение основного материала в тиноле, взаимная диффузия. При застывании выходит надежный монтаж двух деталей.

Чем отличается пайка то варки?

Монтаж деталей путем применения пайки по виду похож на сварочный монтаж, но суть процедуры в корне отличается от сварки. Рассмотрим отличия подробнее.

Отличия:

  1. Основной материал во время работы не расплавляется до определенной температуры, как это происходит во .
  2. Отсутствующее расплавление металла основы деталей позволяет соединять детали достаточно мелких размеров.
  3. В первом случае разъединение, а также соединение деталей (монтаж/демонтаж) может производиться без ущерба для целостности материала (сплав или металл не страдает).
  4. Процедура может воздействовать на разные металлы, сплав каждого из них, и даже на неметаллы во всяком сочетании.
  5. Пайка уступает сварочному процессу по прочности соединений. Таким образом, монтаж деталей путем пайки, поддающихся значительным механическим нагрузкам, не всегда предпочтителен.

Виды соединения

Рассмотрим виды пайки, которые нужно знать, поскольку лужение и пайка, а также другие процессы могут производиться по-разному в зависимости от выбранного вида соединения деталей.

Виды:

  • Низкотемпературная . Преимущества: возможность обработки миниатюрных деталей, экономичность, простота использования.
  • Высокотемпературная . Преимущества: доступен монтаж деталей, подвергающихся сильным механическим нагрузкам.
  • Композиционная процедура воздействует на металл и сплав изделия, имеющего неравномерные или некапиллярные зазоры. Применяются композиционные припои.
  • Готовым припоем – наиболее популярный способ.
  • Реакционно-флюсовая пайка.

Вышеупомянутые методы работы сегодня уверенно применяются во многих отраслях, занимают свои ниши. В связи с этим говорить о предпочтении одного способа нецелесообразно.

Способы пайки классифицируют в зависимости от используемых источников нагрева. Наиболее распространены в промышленности пайка радиационным нагревом, экзофлюсовая, паяльниками, газопламенная, погружением, электродуговая, индукционная, электросопротивлением, пайка в печах.

Пайка радиационным нагревом. Пайку выполняют за счет излучения кварцевых ламп, расфокусированного электронного луча или мощного светового потока от квантового генератора (лазера). Конструкцию, подлежащую пайке, помещают в специальный контейнер, в котором создают вакуум. После вакуумирования контейнер заполняют аргоном и помещают в приспособление, с двух сторон которого устанавливают для обогрева кварцевые лампы. После окончания нагрева кварцевые лампы отводят, а приспособление вместе с деталями охлаждают. При применении лазерного нагрева сосредоточенная в узком пучке тепловая энергия обеспечивает испарение и распыление окисной пленки с поверхности основного металла и припоя, что позволяет получать спаи в атмосфере воздуха без применения искусственных газовых сред. При радиационном способе пайки лучистая энергия превращается в тепловую непосредственно в материале припоя и паяемых деталей. Этот способ пайки непродолжителен.

Экзофлюсовая пайка. В основном этим способом паяют коррозионно-стойкие стали. На очищенное место соединения наносят тонкий порошкообразный слой флюса. Соединяемые поверхности совмещают, на противоположные стороны заготовок укладывают экзотермическую смесь. Смесь состоит из разных компонентов, которые укладывают в форме пасты или брикетов толщиной в несколько миллиметров. Собранную конструкцию устанавливают в приспособлении
и помещают в специальную печь, в которой происходит зажигание экзотермической смеси при 500°С. В результате экзотермических реакций смеси температура на поверхности металла повышается и происходит расплавление припоя. Этим методом паяют соединения внахлестку и готовые блоки конструкций небольших размеров.

Пайка паяльниками. Основной металл нагревают и припой расплавляют за счет теплоты, аккумулированной в массе металла паяльника, который перед пайкой или в процессе ее подогревают. Для низкотемпературной пайки применяют паяльники с периодическим нагревом, с непрерывным нагревом, ультразвуковые и абразивные. Рабочую часть паяльника выполняют из красной меди. Паяльник с периодическим нагревом в процессе работы иногда подогревают от постороннего источника теплоты. Паяльники с постоянным нагревом делают электрическими. Нагревательный элемент состоит из нихромовой проволоки, намотанной на слой асбеста, слюды или на керамическую втулку, устанавливаемую на медный стержень паяльника. Паяльники с периодическим и непрерывным нагревом чаще используют для флюсовой пайки черных и цветных металлов мягкими припоями с температурой плавления ниже 300–350°С. Ультразвуковые паяльники применяют для бесфлюсовой низкотемпературной пайки на воздухе и для пайки алюминия легкоплавкими припоями. Оксидные пленки разрушаются за счет колебаний ультразвуковой частоты. Абразивными паяльниками можно паять алюминиевые сплавы без флюса. Оксидная пленка удаляется в результате трения паяльника о металл.

Важное значение имеет сборка узлов под пайку. Сборка должна обеспечивать фиксацию взаимного положения деталей с требуемым зазором и поступление припоя в зазор. В тех случаях, когда припой заранее закладывают в соединение в виде фольги и затем нагревают узел (например, в вакуумной печи), необходимо обеспечить сжатие деталей при температуре пайки с определенным усилием. Если это усилие будет недостаточным, то получится слишком толстый шов с неудовлетворительной прочностью. Чрезмерное сжатие может повредить паяемый узел.

Для сжатия деталей при пайке применяют специальные приспособления. Необходимое усилие сжатия обеспечивается механическими зажимами или разницей между температурным расширением материала изделия и материала приспособления. Последний способ нередко является единственным, когда печная пайка осуществляется при высоких температурах.

Газопламенная пайка. При пайке нагрев осуществляется
пламенем газовой горелки. В качестве горючего газа используют смеси различных газообразных или жидких углеводородов (ацетилен, метан, пары керосина и т. д.) и водород, которые при сгорании в смеси с кислородом дают высокотемпературное пламя. При пайке крупных деталей горючие газы и жидкости применяются в смеси с кислородом, при пайке мелких деталей – в смеси с воздухом. Пайку можно выполнять как горелками специального типа, дающими широкий факел, так и нормальными, сварочными паяльными лампами.

Пайка погружением в расплавленный припой. Расплавленный припой в ванне покрывается слоем флюса. Подготовленная к пайке деталь погружается в расплавленный припой (металлическую ванну), который также является источником тепла. Для металлических ванн обычно используют медно-цинковые и серебряные припои.

Пайка погружением в расплавленную соль. Состав ванны выбирают в зависимости от температуры пайки, которая должна соответствовать рекомендуемой температуре ванны 700–800°С при работе на смеси определенного состава. Ванна состоит из хлористых натрия, калия, бария и др. Этот метод не требует применения флюсов и защитной атмосферы, так как состав ванны подбирают таким, что он вполне обеспечивает растворение оксидов, очищает паяемые поверхности и защищает их от окисления при нагреве, т. е. является флюсом.

Детали подготавливают к пайке, на шов в нужных местах укладывают припой, после чего опускают в ванну с расплавленными слоями, являющимися флюсом и источником тепла, где припой расплавляется и заполняет шов.

Электродуговая пайка. При дуговой пайке нагрев осуществляется дугой прямого действия, горящей между деталями и электродом, или дугой косвенного действия, горящей между двумя угольными электродами. При использовании дуги прямого действия обычно применяют угольный электрод (угольная дуга), реже – металлический электрод (металлическая дуга), которым служит сам стержень припоя. Угольную дугу направляют на конец стержня припоя, касающегося основного металла, так, чтобы не расплавлять кромок детали. Металлическую дугу применяют при токах, достаточных для расплавления припоя и очень незначительно оплавляющих кромки основного металла. Для пайки дугой прямого действия пригодны высокотемпературные припои, не содержащие цинка. При помощи угольной дуги косвенного действия можно выполнять процесс пайки высокотемпе­ратурными припоями всех типов. Для нагрева этим способом применяют специальную угольную горелку. Ток к электродам подается
от машины для дуговой сварки.

Индукционная пайка (пайка токами высокой частоты ). При индукционной пайке детали нагреваются индуктируемыми в них вихревыми токами. Индукторы изготовляются из медных трубок, преимущественно прямоугольного или квадратного сечения, в зависимости от конфигурации деталей, подлежащих пайке.

При индукционной пайке быстрый нагрев детали до температуры пайки обеспечивается использованием энергии высокой концентрации. Для предохранения индуктора от перегрева и расплавления применяется водяное охлаждение.

Пайка электросопротивлением. При этом способе пайки электрический ток низкого напряжения (4–12 В), но сравнительно большой силы (2000–3000 А) пропускают через электроды и за короткое время нагревают их до высокой температуры; детали нагреваются как за счет теплопроводности от нагретых электродов, так и за счет тепла, выделяемого током при его прохождении в самих деталях.

При прохождении электрического тока паяемое соединение нагревается до температуры плавления припоя, и расплавленный припой заполняет шов. Контактную пайку производят или на специальных установках, обес­печивающих питание током большой силы и малого напряжения, или на обычных машинах для контактной сварки.

Пайка в печах. Для пайки используются электрические печи и реже пламенные печи. Нагрев деталей под пайку производят в обычной, восстановительной или обладающей защитными свойствами средах. Пайку высокотемпературными припоями производят с применением флюсов. При пайке в печах с контролируемой средой подлежащие пайке детали из чугуна, меди или медных сплавов собирают в узлы.

Пайка соединений металлов с неметаллическими материалами. Пайкой можно получить соединения металлов со стеклом, кварцем, фарфором, керамикой, графитом, полупроводниками и другими неметаллическими материалами.

Обработка после пайки включает в себя удаление остатков флюса. Флюсы, частично оставшиеся после пайки на изделии, портят его внешний вид, изменяют электрическую проводимость, а некоторые вызывают коррозию. Поэтому остатки их после пайки должны быть тщательно удалены. Остатки канифоли и спиртоканифольных флюсов обычно коррозии не вызывают, но если по условиям эксплуатации изделий требуется их удалить, то изделие промывают спиртом, спиртобензиновой смесью, ацетоном. Агрессивные кислотные флюсы, содержащие соляную кислоту или ее соли, тщательно отмывают
последовательно горячей и холодной водой с помощью волосяных щеток.

Типовые паяные соединения показаны на рис. 2.1. Паяные швы отличаются от сварных по конструктивной форме и способу образования.

Тип паяного соединения выбирают с учетом эксплуатационных требований, предъявляемых к узлу, и технологичности узла в отношении пайки. Наиболее распространенным видом соединения является пайка внахлестку.


Рис. 2.1. Типовые паяные соединения

В узлах, работающих при значительных нагрузках, где, кроме прочности шва, необходима герметичность, детали следует соединять только внахлестку. Швы внахлестку обеспечивают прочное соединение, удобны при выполнении и не требуют проведения подгоночных операций, как это имеет место при пайке встык или в ус.

Стыковые соединения обычно применяют для деталей, которые нерационально изготовлять из целого куска металла, а также в тех случаях, когда нежелательно удваивать толщину металла. Их можно применять для малонагруженных узлов, где не требуется
герметичность. Механическая прочность припоя (особенно низкотемпературного) обычно бывает ниже прочности соединяемого металла; для того чтобы обеспечить равнопрочность паяного изделия, прибегают к увеличению площади спая путем косого среза (в ус) или ступенчатого шва; часто с этой целью применяют комбинацию стыкового соединения с нахлесткой.

Пайкой можно изготавливать сложные по конфигурации узлы и целые конструкции, состоящие из нескольких деталей, за один производственный цикл (нагрев), что позволяет рассматривать пайку (в отличие от сварки) как групповой метод соединения материалов и превращает ее в высокопроизводительный технологический процесс, легко поддающийся механизации и автоматизации.

При пайке возможны следующие дефекты: смещение паяемых элементов; раковины в швах; пористость в паяном шве; флюсовые и шлаковые включения; трещины; непропай; деформации местные и общие.

Подскажите, каким методом лучше сваривать оцинкованные детали?

Миг-пайка элемента автомобиля

Для соединения оцинкованных поверхностей в последнее время рекомендуют вместо полуавтоматической сварки в среде аргона МIG-пайку. При сварке разрушенное цинковое покрытие образует с расплавленным металлом шлак, поры, раковины. Это означает пониженное качество и отсутствие цинкового покрытия в зоне сварки. Приходится отправлять детали на повторную гальваническую операцию с целью восстановления антикоррозионного покрытия, что не всегда возможно в узле.

Проблемы при сварке оцинкованного металла

Появление метода МIG-пайки позволило избежать подобных проблем. Метод МIG -пайки отличается от метода МIG-сварки только лишь видом используемой проволоки и режимом процесса.

Для МIG –пайки используется медная проволока CuSi3. Температура ее солидуса небольшая, что позволяет избежать плавления основного металла. Цинковое покрытие не испаряется, а попадая в ванну, образует на поверхности близкое к латуни химическое соединение, которое защищает сварочный шов от коррозии.

Режим сварки оцинкованных сталей

Пайка производится в защитной среде инертного газа, а результат достигается через подбор оптимального режима основного и импульсного тока, при этом переход присадки в шов происходит без короткого замыкания. В режиме импульсного тока его колебания от минимальной до пиковой величины составляют 0,25 до 25 Герц. На изделие выделяется в несколько раз меньше теплоты, а распространение термического влияния в объеме твердого тела резко ограничивается. Капля отрывается от присадочной проволоки по импульсу – как следствие весь процесс практически освобожден от разбрызгивания.
Кроме сталей с оцинковкой, процесс применяется для углеродистых, низколегированных и коррозионостойких сталей. Сваркой-пайкой доступно выполнение вертикальных швов в любом направлении (от потолка к полу и наоборот — никаких проблем) и потолочных. Скорость – до 1000 мм/мин.
С помощью МIG –пайки соединяют очень тонкие стальные листы с минимальными деформациями. Применяется метод МiG –пайки в автосервисе, в судостроении, в системах вентиляции и кондиционирования.
Еще вариант – данным способом прекрасно соединяются рамы велосипедов.

Cварка оцинковки TIG

При ТИГ-сварке, если дуга «как можно короче» шов получается выпуклой формы, что сказывается на усталостной прочности изделия, высокотемпературная пайка приводит к возникновению поводок, а MIG-пайка компенсирует недостатки и первого, и второго, обеспечивая вогнутый шов и делая возможным малое вложение теплоты в материал, при этом прочность соединения остается близкой к сварочной.

проволока медная мм купить