Вихревой теплогенератор сделать своими руками. Вихревой теплогенератор – новый источник тепла в доме. Комплектация и принцип работы

Множество полезных изобретений осталось невостребованными. Это происходит из-за человеческой лени или из-за страха перед непонятным. Одним из таких открытий долгое время был вихревой теплогенератор. Сейчас на фоне тотальной экономии ресурсов, стремлению к использованию экологически чистых источников энергии, теплогенераторы стали применять на практике для отопления дома или офиса. Что же это такое? Прибор, который раньше разрабатывался только в лабораториях, или новое слово в теплоэнергетике.

Система отопления с вихревым теплогенератором

Принцип действия

Основой работы теплогенераторов является преобразование механической энергии в кинетическую, а затем – в тепловую.

Еще в начале ХХ столетия Жозеф Ранк обнаружил сепарацию вихревой струи воздуха на холодную и горячую фракции. В середине прошлого века немецкий изобретатель Хилшем модернизировал устройство вихревой трубы. Спустя немного времени, русский ученый А. Меркулов запустил в трубу Ранке вместо воздуха воду. На выходе температура воды значительно повысилась. Именно этот принцип лежит в основе работы всех теплогенераторов.

Проходя через водяной вихрь, вода образует множество воздушных пузырьков. Под воздействием давления жидкости пузырьки разрушаются. Вследствие этого освобождается какая-то часть энергии. Происходит нагрев воды. Этот процесс получил название кавитация. На принципе кавитации рассчитывается работа всех вихревых теплогенераторов. Генератор такого типа называется «кавитационный».

Виды теплогенераторов

Все теплогенераторы делятся на два основных вида:

  1. Роторный. Теплогенератор, в котором вихревой поток создается при помощи ротора.
  2. Статический. В таких видах водяной вихрь создается при помощи специальных кавитационных трубок. Давление воды производит центробежный насос.

Каждый вид обладает своими преимуществами и недостатками, на которых следует остановиться подробнее.

Роторный теплогенератор

Статором в данном устройстве служит корпус центробежного насоса.

Роторы могут быть различные. В интернете представлено множество схем и инструкций по их выполнению. Теплогенераторы – скорее научный эксперимент, постоянно находящийся в процессе разработки.

Конструкция роторного генератора

Корпусом является пустотелый цилиндр. Расстояние между корпусом и вращающейся частью рассчитывается индивидуально (1.5-2 мм).

Нагревание среды происходит благодаря ее трению с корпусом и ротором. Помогают этому пузырьки, которые образуются за счет кавитации воды в ячейках ротора. Производительность таких устройств на 30% выше статических. Установки довольно шумные. Имеют повышенную изношенность деталей, за счет постоянного воздействия агрессивной среды. Требуется постоянный контроль: за состоянием сальников, уплотнителей и др. Это значительно усложняет и удорожает обслуживание. При их помощи редко монтируют отопление дома, им нашли немного другое применение – обогрев больших производственных помещений.

Модель промышленного кавитатора

Статический теплогенератор

Основной плюс данных установок в том, что в них ничего не вращается. Электроэнергия тратится только на работу насоса. Кавитация происходит при помощи естественных физических процессов в воде.

КПД таких установок иногда превышает 100%. Средой для генераторов может быть жидкость, сжатый газ, тосол, антифриз.

Разница между температурой входа и выхода может достигать 100⁰С. При работе на сжатом газе, его вдувают по касательной в вихревую камеру. В ней он ускоряется. При создании вихря, горячий воздух проходит сквозь коническую воронку, а холодный возвращается. Температура может достигать 200⁰С.

Достоинства:

  1. Может обеспечить большую разность температур на горячем и холодном концах, работать при низком давлении.
  2. КПД не ниже 90%.
  3. Никогда не перегревается.
  4. Пожаро,- и взрывобезопасен. Может использоваться во взрывоопасной среде.
  5. Обеспечивает быстрый и эффективный нагрев всей системы.
  6. Может использоваться как для обогрева, так и для охлаждения.

В настоящее время применяется недостаточно часто. Используют кавитационный теплогенератор, чтобы удешевить отопление дома или производственных помещений при наличии сжатого воздуха. Недостатком остается довольно высокая стоимость оборудования.

Теплогенератор Потапова

Популярным и более изученным является изобретение теплогенератора Потапова. Он считается статическим устройством.

Сила давления в системе создается центробежным насосом. Струя воды подается с большим напором в улитку. Жидкость начинает разогреваться благодаря вращению по изогнутому каналу. Она попадает в вихревую трубу. Метраж трубы должен быть больше ширины в десятки раз.

Схема устройства генератора

  1. Патрубок
  2. Улитка.
  3. Вихревая труба.
  4. Верхний тормоз.
  5. Выпрямитель воды.
  6. Соединительная муфта.
  7. Нижнее тормозное кольцо.
  8. Байпас.
  9. Отводная линия.

Вода проходит по расположенной вдоль стенок винтовой спирали. Дальше поставлено тормозное устройство для выведения части горячей воды. Струя немного разравнивается пластинами, прикрепленными к втулке. Внутри имеется пустое пространство, соединенное с еще одним тормозным устройством.

Вода с высокой температурой поднимается, а холодный вихревой поток жидкости спускается по внутреннему пространству. Холодный поток соприкасается с горячим через пластины на втулке и нагревается.

Теплая вода спускается к нижнему тормозному кольцу и еще подогревается благодаря кавитации. Подогретый поток от нижнего тормозного устройства проходит через байпас в отводящий патрубок.

Верхнее тормозное кольцо имеет проход, диаметр которого равен поперечнику вихревой трубы. Благодаря ему горячая вода может попасть в патрубок. Происходит смешивание горячего и теплого потока. Дальше вода используется по назначению. Обычно для обогрева помещений или бытовых нужд. Обрат присоединяется к насосу. Патрубок – к входу в систему отопления дома.

Чтобы установить теплогенератор Потапова, необходима диагональная разводка. Горячий теплоноситель нужно подавать в верхний ход батареи, а из нижнего будет выходить холодный.

Генератор Потапова собственными силами

Существует много промышленных моделей генератора. Для опытного мастера не составит труда изготовить вихревой теплогенератор своими руками :

  1. Вся система должна быть надежно закреплена. При помощи уголков изготавливают каркас. Можно использовать сварку или болтовое соединение. Главное, чтобы конструкция была прочной.
  2. На станине укрепляют электродвигатель. Его подбирают соответственно площади помещения, внешним условиям и имеющемуся напряжению.
  3. На раме крепится водяной насос. При его выборе учитывают:
  • насос необходим центробежный;
  • у двигателя хватит сил для его раскрутки;
  • насос должен выдерживать жидкость любой температуры.
  1. Насос присоединяется к двигателю.
  2. Из толстой трубы диаметром 100 мм изготавливается цилиндр длиной 500-600 мм.
  3. Из толстого плоского металла необходимо изготовить две крышки:
  • одна должна иметь отверстие под патрубок;
  • вторая под жиклер. На краю делается фаска. Получается форсунка.
  1. Крышки к цилиндру лучше крепить резьбовым соединением.
  2. Жиклер находится внутри. Его диаметр должен быть в два раза меньше ¼ части диаметра цилиндра.

Очень маленькое отверстие приведет к перегреву насоса и быстрому износу деталей.

  1. Патрубок со стороны форсунки подключается к подаче насоса. Второй подключают к верхней точке системы отопления. Остывшая вода из системы подключается к входу насоса.
  2. Вода под давлением насоса подается в форсунку. В камере теплогенератора ее температура увеличивается благодаря вихревым потокам. Потом она подается в отопление.

Схема кавитационного генератора

  1. Жиклер.
  2. Вал электродвигателя.
  3. Вихревая труба.
  4. Входящая форсунка.
  5. Отводящий патрубок.
  6. Гаситель вихрей.

Для регулирования температуры, за патрубком ставят задвижку. Чем меньше она открыта, тем дольше вода в кавитаторе, и тем выше ее температура.

При прохождении воды через жиклер, получается сильный напор. Он бьет в противоположную стену и за счет этого закручивается. Поместив в середину потока дополнительную преграду, можно добиться большей отдачи.

Гаситель вихрей

На этом основана работа гасителя вихрей:

  1. Изготавливается два кольца, ширина 4-5 см, диаметр немного меньше цилиндра.
  2. Из толстого металла вырезается 6 пластин длиной ¼ корпуса генератора. Ширина зависит от диаметра и подбирается индивидуально.
  3. Пластины закрепляются внутрь колец друг напротив друга.
  4. Гаситель вставляется напротив сопла.

Разработки генераторов продолжаются. Для увеличения производительности с гасителем можно экспериментировать.

В результате работы происходят теплопотери в атмосферу. Для их устранения можно изготовить теплоизоляцию. Сначала ее делают из металла, а поверх обшивают любым изолирующим материалом. Главное, чтобы он выдерживал температуру кипения.

Для облегчения введения в эксплуатацию и обслуживания генератора Потапова необходимо:

  • окрасить все металлические поверхности;
  • изготавливать все детали из толстого металла, так теплогенератор дольше прослужит;
  • во время сборки есть смысл изготовить несколько крышек с различным диаметром отверстий. Опытным путем подбирается оптимальный вариант для данной системы;
  • до подключения потребителей, закольцевав генератор, необходимо проверить его герметичность и работоспособность.

Гидродинамический контур

Для правильного монтажа вихревого теплогенератора необходим гидродинамический контур.

Схема подключения контура

Для его изготовления необходимы:

  • выходной манометр, для измерения давления на выходе из кавитатора;
  • термометры для измерения температуры до и после теплогенератора;
  • сбросной кран для удаления воздушных пробок;
  • краны на входе и выходе;
  • манометр на входе, для контроля давления насоса.

Гидродинамический контур упростит обслуживание и контроль за работой системы.

При наличии однофазной сети, можно использовать частотный преобразователь. Это позволит поднять скорость вращения насоса, подобрать правильную.

Вихревой теплогенератор применяется для отопления дома и подачи горячей воды. Имеет ряд преимуществ перед другими обогревателями:

  • установка теплогенератора не требует разрешительных документов;
  • кавитатор работает в автономном режиме и не требует постоянного контроля;
  • является экологически чистым источником энергии, не имеет вредных выбросов в атмосферу;
  • полная пожаро,- и взрывобезопасность;
  • меньший расход электричества. Неоспоримая экономичность, КПД приближается к 100%;
  • вода в системе не образует накипи, не требуется дополнительная водоподготовка;
  • может использоваться как для отопления, так и для подачи горячей воды;
  • занимает мало места и легко монтируется в любую сеть.

С учетом всего этого, кавитационный генератор становится более востребованным на рынке. Такое оборудование с успехом применяют для отопления жилых и офисных помещений.

Видео. Вихревой теплогенератор своими руками.

Налаживается производство таких генераторов. Современная промышленность предлагает роторные генераторы и статические. Они оборудованы приборами контроля и датчиками защиты. Можно подобрать генератор, чтобы смонтировать отопление помещений любой площади.

Научные лаборатории и народные умельцы продолжают эксперименты по усовершенствованию теплогенераторов. Возможно, скоро вихревой теплогенератор займет свое достойное место среди приборов отопления.

Многие в своей жизни задумывались о возможности обладания источником возобновляемой энергии. Известный своими уникальными изобретениями гениальный физик Тесла, творивший в начале прошлого века, свои секреты широкой огласке не предал, оставив после себя лишь намёки на свои открытия. Говорят, в проводимых опытах ему удалось научиться управлять гравитацией и телепортировать предметы. Также известно о его работах в направлении получения энергии из-под пространства. Возможно, что у него получилось создать генератор свободной энергии.

Немного о том, что такое электричество

Атом создаёт вокруг себя два типа энергетических полей. Одно образуется круговым вращением, скорость которого близка к световой скорости. Это движение знакомо нам как магнитное поле. Оно распространяется по плоскости вращения атома. Два других возмущения пространства наблюдаются по оси вращения. Последние вызывают появление у тел электрических полей. Энергия вращения частиц и есть свободная энергия пространства. Мы не делаем никаких затрат для того, чтобы она появилась - энергия изначально заложена мирозданием во все частицы материального мира. Задача заключается в том, чтобы вихри вращений атомов в физическом теле сложились в один, который и можно будет извлечь.

Электрический ток в проводе не что иное, как ориентация вращения атомов металла по направлению тока. Но можно ориентировать оси вращения атомов перпендикулярно к поверхности. Такая ориентация известна как электрический заряд. Однако последний способ задействует атомы вещества только на его поверхности.

Удивительное рядом

Генератор свободной энергии можно увидеть в работе обычного трансформатора. Первичная катушка создаёт магнитное поле. Ток появляется во вторичной обмотке. Если достичь коэффициента полезного действия трансформатора больше 1, то можно получить наглядный пример того, как работают генераторы свободной энергии с самозапиткой.

Повышающие трансформаторы также являются наглядным примером устройства, берущего извне часть энергии.

Сверхпроводимость материалов может повысить производительность, но создать условия, чтобы степень полезного действия превышала единицу, пока никому не удавалось. Во всяком случае, публичных заявлений такого рода не существует.

Генератор свободной энергии Тесла

Известного всему миру физика в учебниках по предмету упоминают крайне редко. Хотя его открытие переменного тока сейчас использует всё человечество. У него более 800 зарегистрированных патентов на изобретения. Вся энергетика прошлого века и сегодняшних дней основана на его творческом потенциале. Несмотря на это, часть его работ была скрыта от широкой общественности.

Он участвовал в разработках современного электромагнитного оружия, будучи директором проекта «Радуга». Известный филадельфийский эксперимент, телепортировавший большой корабль с экипажем на немыслимое расстояние - его рук дело. В 1900 году физик из Сербии внезапно разбогател. Он продал часть своих изобретений за 15 миллионов долларов. Сумма в те времена была просто огромна. Кто приобрёл секреты Теслы, остаётся тайной. После его смерти все дневники, которые могли содержать и проданные изобретения, пропали бесследно. Великий изобретатель так и не открыл миру, как устроен и работает генератор свободной энергии. Но, возможно, на планете есть люди, обладающие этой тайной.

Генератор Хендершота

Свободная энергия, возможно, открыла свой секрет американскому физику. В 1928 году он продемонстрировал широкой общественности устройство, которое сразу окрестили бестопливным генератором Хендершота. Первый прототип работал только при правильном расположении прибора согласно магнитному полю Земли. Мощность его была невелика и составляла до 300 Вт. Учёный продолжал работать, совершенствуя изобретение.

Однако в 1961 году его жизнь трагически оборвалась. Убийцы учёного так и не понесли наказание, а само уголовное производство по факту только запутало расследование. Ходили слухи, что он готовился запустить серийное производство своей модели.

Устройство настолько просто в исполнении, что его сможет сделать практически любой желающий. Последователи изобретателя недавно выложили в сеть информацию о том, как собрать генератор Хендершота «Свободная энергия». Инструкция в качестве видеоурока наглядно демонстрирует процесс сборки устройства. С помощью этой информации можно за 2,5 - 3 часа собрать это уникальное устройство.

Не работает

Несмотря на пошаговую видеоподсказку, собрать и запустить генератор свободной энергии своими руками не получается практически ни у кого из пытавшихся это сделать. Причина не в руках, а в том, что учёный, дав людям схему с подробным указанием параметров, забыл упомянуть о нескольких мелких деталях. Скорее всего, сделано это было сознательно, чтобы защитить своё изобретение.

Не лишена смысла и теория о ложности изобретённого генератора. Многие энергетические компании таким образом ведут работу по дискредитации научных изысканий альтернативных источников энергии. Людей, идущих по ложному пути, в конечном счёте ждёт разочарование. Много пытливых умов после неудачных попыток отвергло саму идею свободной энергии.

В чём секрет Хендершота

А с тех, кому решал довериться, брал обязательство в том, что секрет запуска аппарата будет сохранён. Хендершот хорошо разбирался в людях. Те, кому он открыл секрет, сохраняют в тайне знание о том, как запустить генератор свободной энергии. Схема запуска устройства так и не была до сих пор разгадана. Или те, у кого это получилось, решили также эгоистично сохранить знание в тайне от окружающих.

Магнетизм

Это уникальное свойство металлов даёт возможность собирать генераторы свободной энергии на магнитах. Постоянные магниты генерируют магнитное поле определённой направленности. Если их расположить должным образом, то можно заставить ротор долго вращаться. Однако постоянные магниты имеют один большой недостаток - магнитное поле со временем сильно ослабевает, то есть магнит размагничивается. Такой магнитный генератор свободной энергии может выполнять только демонстрационную и рекламную роль.

Особенно много в сети схем по сборке устройств с использованием неодимовых магнитов. Они имеют очень сильное магнитное поле, но и стоят они тоже дорого. Все устройства на магнитах, схемы которых можно найти в сети, выполняют свою роль ненавязчивой подсознательной рекламы. Цель одна - больше неодимовых магнитов, хороших и разных. С их популярностью растёт и благосостояние производителя.

Тем не менее магнитные двигатели, генерирующие энергию из пространства, имеют право на существование. Существуют удачные модели, о которых рассказ пойдёт ниже.

Генератор Бедини

Американский физик - исследователь Джон Бедини, наш современник, изобрёл на основе работ Теслы удивительное устройство.

Анонсировал он его ещё в далёком 1974 году. Изобретение способно увеличивать ёмкость существующих аккумуляторов в 2,5 раза и может восстановить большую часть неработающих аккумуляторов, которые не поддаются зарядке обычным методом. Как говорит сам автор, радиантная энергия увеличивает ёмкость и очищает пластины внутри накопителей энергии. Характерно, что при зарядке напрочь отсутствует нагрев.

Всё-таки она существует

Бедини удалось наладить серийное производство практически вечных генераторов радиантной (свободной) энергии. Ему это удалось, невзирая на то что и правительство, и многие энергетические компании, мягко говоря, невзлюбили изобретение учёного. Тем не менее сегодня любой может купить его, заказав на сайте автора. Стоимость устройства немногим более 1 тысячи долларов. Можно приобрести комплект для самостоятельной сборки. Кроме того, автор не напускает мистики и секретности на своё изобретение. Схема не является тайным документом, а сам изобретатель выпустил пошаговую инструкцию, позволяющую собрать генератор свободной энергии своими руками.

"Вега"

Не так давно украинская компания «Вирано», специализировавшаяся на производстве и реализации ветрогенераторов, начала продажу бестопливных генераторов «Вега», которые вырабатывали электроэнергию мощностью 10 КВт без какого-либо источника извне. Буквально в считанные дни продажа была запрещена из-за отсутствия лицензирования такого типа генераторов. Несмотря на это, запретить само существование альтернативных источников невозможно. В последнее время появляется всё больше людей, желающих вырваться из цепких объятий энергетической зависимости.

Битва за Землю

Что случится с миром, если в каждом доме появится такой генератор? Ответ прост, как и принцип, по которому работают генераторы свободной энергии с самозапиткой. Он просто прекратит своё существование в том виде, в котором пребывает сейчас.

Если в масштабе планеты начнётся потребление электричества, которое даёт генератор свободной энергии, произойдет удивительная вещь. Финансовые гегемоны утратят контроль над миропорядком и рухнут с пьедесталов своего благосостояния. Первоочередная задача их состоит в том, чтобы не дать нам стать действительно свободными гражданами планеты Земля. На этом пути они очень преуспели. Жизнь современного человека напоминает беличьи бега в колесе. Времени остановиться, оглядеться, начать неспешно размышлять нет.

Если остановишься, то сразу выпадешь из "обоймы" успешных и получающих награду за свой труд. Награда на самом деле невелика, но на фоне многих, не имеющих этого, выглядит значительно. Такой образ жизни - путь в никуда. Мы сжигаем не только свои жизни во благо других. Мы оставляем своим детям незавидное наследство в виде загрязнённой атмосферы, водных ресурсов, а поверхность Земли превращаем в свалку.

Поэтому свобода каждого находится в его руках. Теперь у вас есть знание, что в мире может существовать и работать генератор свободной энергии. Схема, с помощью которой человечество скинет многовековое рабство, уже запущена. Мы на пороге великих перемен.

Устройства выработки электрической энергии можно разделить на несколько категорий, в зависимости от того, какой тип энергии используется для преобразования:

  • тепловые;
  • гидравлические;
  • ветровые;
  • солнечные.

Все эти устройства в настоящее время являются основными поставщиками электроэнергии. Недостатком здесь является зависимость от преобразуемых источников.

Усиливающий трансмиттер СЕ Тесла

Недостатки источников энергии

В тепловых электрогенераторах используется энергия сгорания угля или нефтепродуктов, запасы которых в земных недрах подходят к концу. К этому же типу относятся и атомные электростанции. Запасы радиоактивных элементов еще достаточно велики, но тоже не бесконечны. Тепловые электростанции приносят наибольший вред окружающей среде. Это выбросы в атмосферу не полностью сгоревших углеводородов и углекислого газа, а также большая вероятность радиоактивного заражения (для устройств на атомной энергии).

Гидравлические устройства включают в себя гидроэлектростанции, в которых используется энергия запасенной в водохранилищах воды рек и приливные электростанции, использующие энергию приливов и отливов. Нормальная работа гидроэлектростанций зависит от уровня воды в водохранилище и, при существенном его понижении, исключается. К тому же плотины гидроэлектростанций крайне негативно влияют на существующие экосистемы рек и прибрежных районов. Меньшее отрицательное влияние на окружающую среду имеют приливные электростанции.

Ветро-генераторы зависят от движения воздуха и могут быть построены только в местности с устойчивыми ветрами. При изменении климата работоспособность ветро-генераторов может быть под вопросом.

Похожая ситуация и с устройствами преобразования солнечной энергии. Солнечные электростанции устанавливаются только в местности с большим количеством солнечных дней в году. Ночью и в облачную погоду такие электростанции не работают.

Перечисленные недостатки заставляют вести активные поиски альтернативных источников энергии.

Альтернативные источники энергии

Среди энтузиастов наиболее широкое внимание уделяется использованию свободной энергии и магнитного поля Земли. Поскольку научной базы для определения свободной энергии до сих пор нет, то возникают споры, что же такое свободная энергия. Большинство исследований проводится в области применения радиантной энергии, энергии вакуума и магнитного поля. Источником вдохновения для конструирования генераторов на свободной энергии своими руками служат работы сербского ученого Николы Тесла.

Все устройства, которые используют в работе принцип свободной энергии делятся на:

  • радиантные генераторы;
  • блокинг-генераторы на постоянных магнитах без движущихся частей;
  • блокинг-генераторы на постоянных магнитах;
  • трансгенератор;
  • механические нагреватели с коэффициентом полезного действия больше единицы;
  • имплозионные (вихревые генераторы Потапова);
  • электролиз воды без источников внешней энергии;
  • тепловые насосы;
  • холодный ядерный синтез.

Из всех перечисленных устройств только тепловые насосы имеют строгое научное обоснование. Говоря точнее, они не являются генераторами на свободной энергии, поскольку используют в своей работе разницу температур в различных слоях земли.

Радиантные СЕ генераторы

Радиантная энергия подобна электростатической, в связи с чем нередко возникает путаница. Радиантная энергия получается из окружающей среды или внешнего источника электроэнергии с последующей отдачей во внешнюю цепь ее излишков.

Наиболее известные устройства на радиантной энергии – это усиливающий трансмиттер Тесла, генератор СЕ с самозапиткой и генератор Т. Генри Моррея. Все новые схемы используют в работе их принципы действия.

Усиливающий трансмиттер Тесла

Усиливающий трансмиттер Тесла представляет собой резонансный трансформатор с особыми обмотками плоской формы, которые запитываются от внешнего источника электроэнергии посредством специальных конденсаторов и разрядников.

Особенностью трансмиттера является генерация в окружающей среде стоячих волн радиантной энергии, которая не ослабевала от расстояния. Областью применения усиливающего трансмиттера предполагалась дистанционная беспроводная передача электроэнергии. К сожалению, Тесла не успел в полной мере закончить эксперименты по передаче энергии, а чертежи и описания опытных установок оказались после его смерти засекреченными. Фото приемно-передающей вышки усиливающего трансмиттера Тесла приведено выше.

Собранные своими руками, новые установки если и работали, то выдавали крайне низкую эффективность. Единственное устройство, которое под силу собрать и испытать своими руками, это трансформатор Тесла, имеющий огромный коэффициент трансформации и способный выдавать на выходе напряжение в десятки и сотни тысяч вольт при ничтожных затратах входной электроэнергии.

Генератор Т. Генри Моррея

Генератор Т. Генри Моррея основан на преобразовании радиантной энергии посредством специально сконструированных конденсаторов и диодов. Конструктивно конденсаторы были схожи с электронными лампами, однако, в отличие от последних, не требовали дополнительного подогрева электродов (рис. ниже).

Конденсатор Т. Генри Моррея

Генератор СЕ с самозапиткой – это генератор автоколебаний, требующий подачи энергии от внешнего источника для запуска генерации. В дальнейшем питание производится от выходного напряжения генератора под действием магнитного поля Земли. Если запуск собранного своими руками генератора производится от аккумуляторной батареи, то при работе блокинг-генератора с самозапиткой избыток энергии можно пускать на подзаряд аккумулятора (рис. ниже). Работа генератора основана на взаимодействии магнитного поля трансформатора с энергией от различных источников.

Схема генератора СЕ с самозапиткой

Одним из вариантов генератора на свободной энергии с самозапиткой является трансгенератор (рис. ниже). Данный генератор использует действие магнитного поля Земли на обмотки трансформатора и весьма прост для сборки своими руками.

Схема трансгенератора – генератора на свободной энергии с самозапиткой

Генераторы свободной энергии

Путем объединения физических процессов генераторов СЕ с самозапиткой и генераторов на постоянных магнитах получается схема магнитного блокинг-генератора на постоянных магнитах (рис. ниже). Такой блокинг-генератор также требует импульс от входного источника для начала генерации. Для создания магнитного поля здесь используются мощные магниты.

Схема блокинг-генератора СЕ на постоянных магнитах

Имплозионные (вихревые) генераторы

Разговаривая о генераторах электроэнергии, нельзя не упомянуть источники тепла, которые позволяют вырабатывать тепло с коэффициентом полезного действия более 100%. Речь идет о вихревых генераторах конструкции Ю. С. Потапова. Работа теплогенератора основана на взаимодействии соосных вихревых потоков жидкости. Принцип работы вихревого генератора Потапова приведен на рисунке ниже.

Схема вихревого генератора Потапова

Подача воды осуществляется центробежным насосом через патрубок (2). Двигаясь по спирали вдоль внешней стенки корпуса (1), жидкость подходит к отражающему конусу (4), где разделяется на два потока. Внешний, подогретый поток возвращается к насосу, а внутренний, отразившись от поверхности конуса, образует вихрь меньшего диаметра, который проходит внутри первичного вихря и поступает на выходной патрубок (3), к которому подключается система отопления.

Нагрев жидкости происходит за счет теплообмена между завихрениями. Отсутствие подвижных частей в теплообменнике обеспечивает теплогенератору сверхвысокий КПД.

Собрать вихревой нагреватель Потапова своими руками сложно, поскольку требуется применение заводского оборудования для обработки металла.

Новые варианты теплогенераторов используют явление кавитации – образование в объеме жидкости микроскопических пузырьков пара и их схлопывание. Данный процесс сопровождается выделением большого количества тепловой энергии.

Электролиз воды

Очень перспективны новые направления исследований, которые занимаются проблемой электролиза воды без применения сторонних источников энергии. Вода является простейшим обратимым источником энергии. Все очень просто. Молекулы воды состоят из атомов кислорода и водорода. При электролизе образуются газы кислород и водород, которые можно использовать в качестве замены любого углеводородного топлива.

Взаимодействие кислорода и водорода происходит с образованием молекул воды и выделением большого количества тепла. Проблема электролиза заключается в необходимости подвода большого количества энергии для протекания реакции. Изменяя конфигурацию электродов и состав катализатора, а также энергию магнитного поля, можно добиться значительного снижения потребляемой мощности. Уже проведен ряд опытов, которые доказывают возможность разложить воду на составляющие элементы без подвода энергии и создать новые источники энергии.

Холодный ядерный синтез

Традиционные ядерные и термоядерные реакции, в ходе которых происходит превращение одних элементов в другие, требуют огромного количества энергии для инициирования процесса. Это связано с тем, что для превращения элементов требуется сблизить их ядра на очень малое расстояние, при котором силы взаимного отталкивания настолько велики, что требуют огромных затрат энергии.

Такие реакции происходят в атомных реакторах, атомных бомбах и ускорителях частиц в условиях большой напряженности магнитного поля.

Атомный реактор работает по тому же принципу, что и атомная бомба, за исключением того, что реакция может контролироваться. Реакторы требуют специфического топлива и чрезвычайно опасны в плане радиационного заражения и облучения.

Проблема холодного ядерного синтеза заключается в том, чтобы найти возможность проводить ядерные реакции без подвода внешней энергии и без выделения радиоактивного излучения. Как и в случае с электролизом воды, новые исследования уже дали положительные результаты.

Проблема генераторов на свободной энергии заключается в активном противодействии сторонников традиционных источников, поскольку вся мировая экономика основана на углеводородном топливе и радиоактивных материалах. Холодный ядерный синтез объявлен лженаукой, и всякое финансирование в этой области прекращено. Все работы проводятся только энтузиастами.

Видео. Генератор с самозапиткой

В Интернете можно найти множество ссылок на конструкции генераторов СЕ различных типов, таких как трансгенератор или блокинг-генератор СЕ. Приводятся описания и технические характеристики, методика расчетов и сборки своими руками. Однако нет ни одной ссылки, указывающей, где можно увидеть действующий прототип генератора на свободной энергии. Также многие собирали своими руками генераторы свободной энергии, блокинг-генераторы, однако их характеристики не соответствовали заявленным, или устройства не работали совсем.

Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов - это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» - это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

В полости «улитки» располагается дисковый активатор - диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор . Дисковый активатор - это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду . Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую . Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Сфера применения

Иллюстрация Описание сферы применения

Отопление . Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.

Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.


Нагрев проточной воды для бытового использования . Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п.

Смешивание несмешиваемых жидкостей . В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции.

Интеграция в отопительную систему частного дома

Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.

Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке - 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке - 6) и запорная арматура.

Преимущества применения кавитационных теплогенераторов

Достоинства вихревого источника альтернативной энергии

Экономичность . Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования.

Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности . Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.

Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.


Небольшая масса установки . За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.

Единственно, на что нужно обратить внимание при монтаже прибора в отопительной системе, так это на высокий уровень шума. Поэтому монтаж генератора возможен только в нежилом помещении - в котельной, подвале и т.п


Простая конструкция . Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.

В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.


Нет необходимости в дополнительных доработках . Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение.

Нет необходимости в водоподготовке . Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.

За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.


Работа оборудования не требует постоянного контроля . Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.

Инструкция эксплуатации устройства проста - достаточно включить двигатель в сеть и, при необходимости, выключить.


Экологичность . Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент - это электродвигатель.

Схемы изготовления теплогенератора кавитационного типа

Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.

Иллюстрации Общее описание конструкций кавитационных теплогенераторов

Общий вид агрегата . На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора.

Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4).

Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока.

Особо важный элемент на схеме - это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9).

Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков.

Прибор с двумя последовательными резонаторами . На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно.

Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки.

Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства.


Теплогенератор с встречными резонаторами . На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга.

В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20.

Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно.

Иллюстрации Описание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора
«Улитка» кавитационного теплогенератора в поперечном разрезе . На этой схеме можно видеть следующие детали:

1 - корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы;

2 - вал, на котором закреплен роторный диск;

3 - роторное кольцо;

4 - статор;

5 - технологические отверстия проделанная в статоре;

6 - излучатели в виде стержней.

Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым.

Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной.


Схема совмещения роторного кольца (3) и статора (4) . На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка.

Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу


Поворотное смещение роторного кольца и статора . На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается.

То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше.

Подведем итоги

Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.

Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с тэнами является нецелесообразным или небезопасным. В таких ситуациях на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-хгодов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.

Устройство и принцип работы

Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.

Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.

В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:

  • Пассивные тангенциальные системы;
  • Пассивные аксиальные системы;
  • Активные устройства.

Теперь рассмотрим каждую из категорий более детально.

Пассивные тангенциальные ВТГ

Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.

Рисунок 1: принципиальная схема пассивного тангенциального генератора

При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.

Пассивные аксиальные теплогенераторы

Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.


Рис. 2: принципиальная схема пассивного аксиального теплогенератора

Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.

Активные теплогенераторы

Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.


Рис. 3: принципиальная схема активного теплогенератора

При вращении активатора в таком происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только на активаторе.

Назначение

На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием данного направления, вихревые теплогенераторы применяются для:

  • Отопления помещений, как в бытовых, так и в производственных зонах;
  • Нагревания жидкости для осуществления технологических операций;
  • В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
  • Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
  • Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
  • Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
  • Парогенерации.

С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.

Преимущества и недостатки

В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:

  • Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
  • Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами и устройствами на нефтепродуктах не представляют такой угрозы;
  • Вариативность — вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
  • Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
  • Нет необходимости организации системы охлаждения ;
  • Не требуют организации отвода продуктов сгорания , не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
  • Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
  • Не образуется накипь в процессе нагревания жидкости , что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;

Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:

  • Создает сильную шумовую нагрузку в месте установки , что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
  • Характеризуется большими габаритами , в сравнении с классическими нагревателями жидкости;
  • Требует точной настройки процесса кавитации , так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
  • Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.

Критерии выбора

При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:

  • Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
  • Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
  • Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
  • Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
  • Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
  • Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.

Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:

Таблица: характеристики некоторых моделей вихревых генераторов

Установленная мощность электродвигателя, кВт
Напряжение в сети, В 380 380 380 380 380
Обогреваемый объем до, куб.метры. 5180 7063 8450 10200 15200
Максимальная температура теплоносителя, о С
Масса нетто, кг. 700 920 1295 1350 1715
Габаритные размеры:
— длина мм

— ширина мм.

— высота мм.

Режим работы автомат автомат автомат автомат автомат

Также немаловажным фактором является цена вихревого теплогенератора, которая устанавливается заводом изготовителем и может зависеть как от его конструктивных особенностей, так и от параметров работы.

ВТГ своими руками


Рисунок 4: общий вид

Для изготовления вихревого теплогенератора в домашних условиях вам понадобится: электрический двигатель, плоская герметичная камера с вращающимся в ней диском, насос, болгарка, сварка (для металлических труб), паяльник (для пластиковых труб) электрическая дрель, трубы и фурнитура к ним, станина или стенд для размещения оборудования. Сборка включает в себя следующие этапы:



Рис. 6: подключите подачу воды и электропитания

Такой вихревой теплогенератор можно подключить как к уже существующей системе теплоснабжения, так и установить для него отдельные радиаторы отопления.

Видео по теме