Автомобиль на природном газе. Плюсы и минусы газового автомобильного оборудования Как работает двс на газе

При покупке коммерческого транспорта важно обращать внимание не только на грузоподъемность и прочие характеристики, но и на двигатель. «ГАЗель» является наиболее популярным малотоннажным коммерческим авто в России. Эта машина выпускается серийно с 1994 года. За это время на нее устанавливались разные силовые установки. О том, какой двигатель лучше на «ГАЗели», расскажем в нашей сегодняшней статье.

Разновидности силовых установок

Изначально на эти автомобили ставились агрегаты от Все они имеют рядное расположение цилиндров. С 1994 по 2003 год устанавливался на «ГАЗель» 402 двигатель (карбюратор). Какой лучше выбрать - рассмотрим позже. С выходом нового поколения «ГАЗелей» (это 2003 год), линейка двигателей пополнилась еще одним силовым агрегатом. Это мотор ЗМЗ-406.

Годом позже на «ГАЗель» стали устанавливать более модернизированный агрегат, получивший маркировку ЗМЗ-405. Какими особенностями обладают эти силовые агрегаты? Рассмотрим каждый из них по отдельности.

ЗМЗ-402

Это бензиновый четырёхцилиндровый мотор с карбюраторной системой питания. Являет собой доработанную версию двигателя ЗМЗ-24Д, который устанавливался на «Волги» во времена СССР. Мотор имеет мощность в 100 лошадиных сил при объеме цилиндров в 2,44 литра. Двигатель имеет по 2 клапана на цилиндр. Что говорят об этом моторе отзывы? Владельцы отмечают, что этот двигатель тяжело переносит нагрузки. ЗМЗ-402 не предназначен для коммерческого транспорта. Это легковой двигатель, что выдает низкий крутящий момент.

Среди прочих недостатков владельцы отмечают высокий риск перегрева. Ввиду того, что двигатель постоянно подвергается нагрузкам, греется блок и головка. Мотор обладает малым ресурсом (порядка 150 тысяч километров). Также двигатель требует регулярной настройки и чистки карбюратора. Что касается плюсов, ЗМЗ-402 имеет очень простую конструкцию и весьма ремонтопригодный. Стоимость капитального ремонта этого двигателя на порядок ниже, чем у современных аналогов. В плане расхода топлива этот агрегат самый прожорливый. Тема об экономичности 402-го мотора знакома автомобилистам со времен советских «Волг». Загруженная «ГАЗель» потребляет в городе не менее 19 литров на 100 километров. В зимнее время этот показатель может достигать 22-х. Использовать такую технику разумно только при условии установки ГБО.

ЗМЗ-406

Этот мотор при объеме в 2,3 литра развивает мощность в 145 лошадиных сил. Являет собой новую линейку агрегатов с 16-клапанным механизмом ГРМ. Однако привод газораспределительного механизма осуществляется по-прежнему цепью. Мотор имеет карбюраторную систему питания, но обладает высоким крутящим моментом, что так важно для коммерческого транспорта. Основные преимущества - более высокий ресурс и мощность.

Какой двигатель лучше на «ГАЗели»? Чтобы ответить на этот вопрос, следует выделить отрицательные стороны 406-го мотора. Среди недостатков отзывы отмечают сложность устройства ГРМ. В первую очередь это Элемент со временем растягивается и к 100 тысячам требует замены. Также в конструкции используется архаичная конструкция поршневых колец. Из-за этого наблюдается масложор и высокий расход топлива. «ГАЗель» с этим мотором тратит около 15-20 литров в зависимости от режима эксплуатации.

ЗМЗ-405

Это более усовершенствованный агрегат, построенный на базе 406-го мотора. Имеет более современный, инжекторный впрыск. При объеме в 2,5 литра развивает мощность в 152 лошадиных силы. Также в конструкции была изменена поршневая группа. Это сильно ощущается в разгоне.

Гораздо бодрее, нежели 406-й - говорят отзывы. Также этот агрегат отличается более умеренным «аппетитом». На 100 километров пути он потребляет от 16 до 18 литров топлива. Стоит учитывать, что этот параметр может отличаться, поскольку «ГАЗель» имеет разную высоту будки (парусность) и может перевозить грузы разного тоннажа.

Что доработано?

Отвечая на вопрос о том, какой двигатель лучше поставить на "ГАЗель", стоит рассмотреть технические доработки данного агрегата. В этом моторе были внесены небольшие конструктивные изменения. Так, инженеры доработали головку блока, исключив каналы системы холостого хода. Масса ГБЦ уменьшена на 1,3 килограмма. Если на 406-м двигателе использовалась безасбестовая прокладка ГБЦ, то на 405-м стоит двухслойная металлическая деталь. Она обеспечивает лучшее уплотнение каналов системы охлаждения, смазки и газовых стыков. Таким образом, инженерам удалось добиться наилучшей герметизации соединений в ответственных местах. Кстати, этот мотор стал первым в линейке, который официально соответствовал требованиям «Евро-3».

Что в итоге?

Итак, какой двигатель лучше - 402 или 406? «ГАЗель», укомплектованная первым двигателем, очень слабо набирает скорость и тяжело переносит нагрузки. Из-за этого мотор перегревается и расходует масло. Какой двигатель лучше на «ГАЗели»? Что касается 406-го мотора, то он является отличной альтернативой между 402-м и 405-м. Стоимость «ГАЗелей» с этим мотором на порядок ниже, чем с инжекторным агрегатом. При этом 406-й мотор имеет современный 16-клапанный механизм ГРМ и огромный потенциал для тюнинга. При желании его можно форсировать, заменив поршневую группу на Ульяновскую. Основной недостаток этого мотора - карбюратор. Сейчас очень мало специалистов, занимающихся их настройкой. А ведь карбюратор требует постоянного обслуживания и регулировки.

Если рассматривать, какой двигатель лучше - 405 или 406 для «ГАЗели», однозначным лидером будет ЗМЗ-405. Этот двигатель лишен прежних недостатков и требует меньшего обслуживания, поскольку оснащен инжекторным впрыском. У этого мотора меньший расход топлива и большой крутящий момент. 405-й мотор не перегревается при условии своевременной замены тосола и отличается высоким ресурсом. Практика показывает, что данный двигатель "выхаживает" до капремонта 300 тысяч километров. Однако стоимость «ГАЗелей» с этим мотором гораздо выше. Это, пожалуй, единственный недостаток данного двигателя. В остальном же ЗМЗ-405 является лидером в линейке бензиновых агрегатов. Если стоит вопрос о том, какой двигатель лучше поставить на «ГАЗель», то однозначно 405-й. Это самый надежный и выносливый силовой агрегат, который когда-либо устанавливался на данные автомобили.

Итак, мы выяснили, какой двигатель лучше на «ГАЗели».

Все плюсы и минусы установки газового оборудования на внедорожник

Неумолимо ползущая вверх цена бензина, помноженная на богатырский аппетит двигателя внедорожника, зачастую наводит его владельца на мысль перевести машину на газовую «диету». С одной стороны, это заманчиво – потратившись раз на установку газобаллонного оборудования, платить затем сущие копейки за удовольствие кататься. Однако любой достигнутый результат, как известно, имеет две стороны. Так каковы же плюсы и минусы альтернативной системы питания?

В качестве автомобильного топлива используют два разных по своим свойствам и происхождению газа: метан, имеющий химическую формулу СН 4 , и пропан-бутан, получаемый в результате смешивания в С 2 Н 8 и С 4 Н 10 .Метан – это тот самый газ, что поступает в городские квартиры по трубам. Пропан-бутановая смесь – сжиженный газ, получаемый в процессе переработки нефти. Последний хорошо знаком дачникам и туристам – именно его продают в баллонах емкостью от 0,5 до 50 л.

Пропан-бутан

Несмотря на то, что принципиальные схемы подачи газа в двигатель в обоих случаях близки, оборудование для метана и для пропан-бутана требуется совершенно разное. Относительно высокая плотность (в 1,5–2 раза тяжелее воздуха) и, главное, относительно высокая температура кипения нефтяного газа позволяют хранить его в виде жидкости, свободное пространство над которой занято насыщенным паром. Благодаря высокой плотности жидкой фазы можно в малом объеме уместить большое количество топлива. По мере расхода газа давление в баллоне снижается, в результате снова происходит испарение, и давление растет, а поскольку во время работы двигателя оба эти процесса происходят практически одновременно и непрерывно, то и давление внутри баллона поддерживается почти без изменений до полного его опустошения. Давление главным образом зависит от температуры окружающей среды. Так, при 0°С в баллоне, заполненном пропан-бутаном, оно составляет всего 0,7 атм, при 20°C – 3–4 атм, а при 50°C оно подбирается уже к 16 атм, что довольно близко к предельному значению для баллонов наиболее распространенных марок. Кстати, именно поэтому в жаркий день оснащенную газом машину лучше парковать в тени. Конечно, при перегреве газифицированное транспортное средство не взорвется – сработает клапан сброса избытка давления, и газ станет мало-помалу уходить в атмосферу. Но это только если клапан имеется…Дело в том, что на дешевую аппаратуру его зачастую не устанавливают, и в случае перегрева баллон может просто лопнуть. Об этом свойстве следует помнить при заправке. Баллон нужно заливать на 80–90%, чтобы в нем оставалась паровая подушка, компенсирующая увеличение объема жидкой фазы.

Характерно, что при переводе автомобиля на пропан-бутан двигатель становится двухтопливным, так как полностью исключить необходимость использования бензина в эксплуатации не удастся. По крайней мере, пуск и прогрев двигателя в холодную погоду придется выполнять на традиционном топливе, поскольку газ при переходе из жидкой фазы сильно охлаждается, и редуктор требует подогрева охлаждающей жидкостью двигателя. Если же антифриз сам холоден, то температура газа в редукторе может упасть ниже 40°C, и он замерзнет! Поэтому все инструкции по газовому оборудованию рекомендуют запускать мотор на пропан-бутане лишь в том случае, если окружающая температура выше +10°С. Впрочем, современные электронные системы контролируют температуру и переключают подачу разных видов топлива автоматически.

Метан

В отличие от нефтяного газа, метан легче воздуха в 1,6 раза и при утечках быстро улетучивается, что существенно повышает безопасность его использования. Из пределов воспламеняемости (см. табл.1) видно, что для взрыва его должно накопиться в 2,5 раза больше, чем пропан-бутана. Однако изза низкой температуры кипения перевести метан в жидкое состояние для применения в автомобиле не удается, потому рабочее давление в метановой системе составляет 200 атм. Это в свою очередь заставляет вносить в конструкцию большой запас прочности, что сказывается и на весе, и на цене. К примеру, самый простой комплект метанового оборудования для УАЗа сейчас стоит в районе 50 000 рублей, в то время как простейший пропан-бутановый набор для этого автомобиля обойдется в 6000. Вдобавок серьезно сокращается запас хода – газообразного вещества в баллоне помещается гораздо меньше, чем жидкости. Для увеличения пробега на одной заправке в метановой системе обычно используются несколько баллонов, которые бывают трех типоразмеров. Самые емкие (они предназначены для грузовиков и автобусов) разместить во внедорожнике практически невозможно, а пять «легковых» баллонов общим весом 150 кг позволяют проехать на УАЗе всего километров 300. С другой стороны, трехступенчатый редуктор просто понижает давление в метановой магистрали с 200 до 1 атм, и никакого испарения не происходит. Результат – в морозы двигатель на метане заводится даже легче, чем на бензине! К тому же природный газ значительно дешевле не только бензина и солярки, но и пропан-бутана. У нас в стране метан стоит от 4,5 до 7 рублей за кубометр. При этом кубический метр метана примерно «равен» 1,18 л бензина и 1,41 л пропан-бутана.

* бензин состоит из многочисленных компонентов, и химическая формула для него бессмысленна. Возможна только условная, средняя.
** при +150 С и атмосферном давлении
*** в газообразном состоянии

Заправки

В 80-е годы прошлого столетия замена нефти альтернативными видами топлива была объявлена важной народнохозяйственной задачей, а метановое направление – наиболее перспективным для автотранспорта. В результате к 1993 году в России было построено 368 автомобильных газонаполнительных компрессорных станций, расположенных в крупных городах и вдоль всех федеральных трасс. В Москве их 10, и все они расположены на МКАДе, а на магистралях расстояние между АГНКС редко превышает 250 км. Это позволяет спокойно отправляться в дальнее путешествие в любом направлении. Но имейте в виду: редко когда компрессорная станция стоит прямо у шоссе, и для заправки обычно приходится сделать небольшой крюк. Зато благодаря тому, что все АГНКС построены на ответвлениях магистрального газопровода, качество топлива стабильно, за исключением редких случаев, когда системы очистки и осушки на какой-то конкретной станции работают недостаточно эффективно. Впрочем, планируя путешествие, рассчитывать на заправку природным газом вдалеке от больших трасс не стоит – компрессорных станций там просто нет.

Заправить же машину пропанбутаном вдалеке от федеральных трасс вполне реально, поскольку нефтяной газ хранят и возят в цистернах, да и пропановых заправок по стране построено в избытке. Зато тут проще попасть на некондицию (с той же степенью вероятности, что и с бензином). Во-первых, пропан-бутан бывает «зимний» и «летний». Из-за разницы в температуре кипения два компонента газа смешивают в разных пропорциях. В общем, как и с соляркой, тут возможны сезонные перебои. Кроме того, в цистернах газовозов иной раз попадается влага (зачастуюпримесь метана).


Владислав ЛУКШО
Начальник отдела газовых двигателей НАМИ

ВАЖНО ВСЕ

С точки зрения работы оборудования, метан и пропан-бутан похожи, и элементы системы у них все те же самые. Все отличия – в деталях и настройках. Для нас более актуально именно метановое оборудование. Несмотря на то, что оно дороже пропан-бутанового (основную часть цены оборудования составляет цена баллонов), в итоге получается значительная экономия. При установке оборудования очень важно, чтобы оно подходило для конкретного автомобиля и двигателя. Важно все – конфигурация смесителя, дозирующего элемента, чтобы баллоны были установлены правильно, притянуты, не болтались по салону. Можно, конечно, поставить абы какое, и машина поедет. Но на комплекте д л я 1,5-литрового двигателя 3-литровый не сможет реализовать свои возможности. Оборудование ему этого просто не позволит.

Для отечественных машин есть комплекты на все двигатели. То же оборудование мы можем установить и на иномарку, если она близка по параметрам. Но на большие моторы импортных внедорожников, к сожалению, ничего нет. В России самый большой легковой двигатель имеет объем всего 2,5 литра. Грузовые моторы при большем объеме имеют меньшую литровую мощность. Мы с ГАЗовского 4,6-литрового двигателя снимаем чуть больше сотни «лошадей», импортные же внедорожники такого объема имеют под триста. Расход газа определяется не только литражом, но и мощностью. Характеристики тут уже другие, и с нашим оборудованием максимальную мощность этот мотор не разовьет. Скажем, дляшоссе, где двигатель загружен от силы на четверть, возможностей будет хватать. Но если вам потребуется резко ускориться, то двигатель с такой задачей не справится. Оборудование должно обеспечивать нормальные характеристики двигателя во всем диапазоне работы. Нельзя, чтобы на малых оборотах он работал, а на больших – нет. Что касается расположения газовых баллонов в автомобиле, то на внедорожнике их можно устанавливать только в багажнике.


Здоровье мотора

Перевод двигателя на газ заставляет мотор работать в иных условиях, нежели на бензине. С одной стороны, тут явные плюсы. Октановое число пропан-бутановой смеси в любом случае выше 100, а у метана оно и вовсе 117! Следовательно, у газа минимальная склонность к детонации и, со-ответственно, он дает меньше нагрузок на поршневую группу. Кроме того, сгорание газа становится более полным в сравнении с жидким топливом, отсюда снижение нагарообразования и уменьшение токсичности выхлопа. К тому же газ не смывает со стенок цилиндров масло при холодном пуске и не содержит примесей – катализаторов старения металлов. Но, с другой стороны, горение газовой смеси происходит медленнее, что повышает тепловую нагрузку на клапана и их седла. К тому же неправильный выбор, установка и регулировка оборудования усугубляют эту особенность, что обычно приводит к печальным последствиям. Так, если на автомобиль установить редуктор, рассчитанный на меньшую мощность двигателя, он не сможет подавать необходимое количество топлива. В результате двигатель будет работать на обедненной смеси, что чревато не только потерей мощности, но и прогаром клапанов!

Еще один момент: газ горит медленнее, чем бензин, поэтому требуется увеличение угла опережения зажигания. Если этого не сделать, смесь продолжает сгорать, когда поршень уже идет вверх. В результате не только снижается термический КПД двигателя, но и происходит разрушение поршня и клапанов за счет их перегрева горячими газами. Поэтому в системе необходим корректор режимов зажигания. И если в электронных системах последних поколений зажигание перестраивается автоматически, то в недорогих механических системах очень важна точность регулировок опережения зажигания в соответствии с изменившимися условиями сгорания смеси.

Кстати, первые советские инструкции по переводу на метан бензиновых моторов предписывали шлифовать головки блока цилиндров для увеличения степени сжатия. Делалось это с целью оптимизации работы двигателей, созданных для потребления 72-го–76-го бензина. Теоретически это полезно для любого мотора, работающего на низкооктановом бензине. Однако данная процедура делает и без того недешевую работу по «газификации» еще дороже.

После перевода машины на газ иногда возникает еще одно неприятное явление – так называемый «обратный хлопок», когда топливо-воздушная смесь воспламеняется во впускном коллекторе в момент открытия обоих клапанов (момент перекрытия фаз). Однако газовое топливо тут ни при чем, оно лишь выявило проблемы, которые на бензине, в силу его свойств горения, были незаметны. Хлопок может случиться и на обычном бензиновом моторе, но происходит это намного реже и, как правило, без фа-тальных последствий. Причины явления кроются в неисправности системы зажигания или ГРМ. Наиболее подвержены обратным хлопкам впрысковые двигатели с безраспределительной двухискровой системой зажигания, оснащенные рычажно-мембранным газовым оборудованием.


ОТЦЫ И ДЕТИ

Самый первый работоспособный четырехтактный двигатель, созданный немецким изобретателем Николаусом Августом Отто в 1877 году, работал именно на газе. Однако, не в последнюю очередь из-за отсутствия компактных и легких баллонов, практического применения на автомобилях газ не получал очень долго. Прообразом газобаллонных машин в какой-то степени можно считать газогенераторные автомобили, появившиеся во время Первой Мировой войны, достигшие расцвета во время Второй Мировой и окончательно сошедшие со сцены лишь в начале 60х. Работали они на твердом топливе. Разумеется, никто чурки в карбюратор не засовывал и в цилиндрах не сжимал. За кабиной располагались две вертикальные металлические колонны. В одной из них через горящие дрова принудительно протягивался уличный воздух, превращаясь на выходе в горючий газ. Затем он охлаждался, очищался, проходя через сложный фильтр, расположенный в другой колонне, и попадал в смеситель, установленный вместо карбюратора. В военные годы, при острой нехватке бензина, эти машины оказались очень кстати, но были и минусы – длительность запуска двигателя, сложность обслуживания генераторной установки и пожарная небезопасность.

Лишь во второй половине ХХ века газовое топливо стало постепенно входить в обиход автомобилистов. Со временем системы совершенствовались, однако принципиальная схема работыоборудования осталась прежней. Из баллона по магистрали высокого давления через фильтр газ попадает в редуктор, назначение которого – снизить давление до близкого к атмосферному. Для пропан-бутана применяют двухступенчатые редукторы, для метана – трехступенчатые, либо двухступенчатые с отдельным редуктором высокого давления. Из редуктора по магистрали низкого давления газ попадает в дозатор, регулирующий подачу топлива. А дальше начинаются отличия. Устройства первого поколения представляют собой чисто механические системы для карбюраторных машин. Они основаны, как и карбюраторы, на принципе всасывания топлива с помощьюразрежения во впускном коллекторе. Второе поколение – механические системы, предназначенные для инжекторных двигателей с каталитическим нейтрализатором. Они оснащаются электронными дозирующими устройствами, которые имеют обратную связь с кислородным датчиком. Третье поколение отличается дозатором-распределителем, управляемым электронным процессором. Газ подается через механические форсунки, работающие от избыточного давления в газовой магистрали. Оборудование такого типа осуществляет синхронный распределенный впрыск газа. Четвертое поколение обеспечивает последовательный распределенный впрыск. Системы оснащаются более совершенными «мозгами» и электромагнитнымифорсунками, расположенными на впускном коллекторе, непосредственно у впускных клапанов. От поколения к поколению системы становились сложнее и дороже. Эти сложности имели своей целью позволить более точно дозировать топливо, чтобы сократить его расход и в итоге снизить потерю мощности.


Мощность и удары

Считается, что при работе на газе падает мощность двигателя. Для внедорожника, трудящегося вне асфальта, это весьма весомая причина, чтобы продолжать ездить на традиционном топливе, если, конечно, потеря существенна. Какова же она на самом деле? Практика показывает, что наиболее заметен разрыв на карбюраторных машинах, оснащенных простейшими газовыми системами. Дело в том, что бензин и газы смешиваются с воздухом во впускном тракте в разных пропорциях. Из-за этого при работе и на пропан-бутане, и особенно на метане, в камеру сгорания попадает менее калорийная горючая смесь. В итоге в первом случае мощность падает на 5–7%, а во втором на 18–20% (в современных системах с распределенным электронным впрыском потери мощности вполовину меньше). И если на трассе потеря даже 20% максимальной мощности будет практически не заметна, то на бездорожье – совсем другое дело, тем более что мощность, как производная крутящего момента, снижается в результате падения последнего. Форма характеристики крутящего момента при переходе на метан не изменяется. Она просто смещается вниз, то есть теряется крутящий момент и в самой важной на бездорожье зоне рабочего диапазона двигателя – зоне низких оборотов.

С другой стороны, боязнь ставить газовые баллоны на внедорожник из-за тряски, прыжков и вероятных ударов о грунт лишена всяких оснований. При проектировании газобаллонных систем инженеры в первую очередь думают о безопасности. Все новые баллоны при сертификации проходят суровые испытания вплоть до того, что их расстреливают и взрывают. По нормативам, баллон должен выдерживать при аварии столкновение с другим автомобилем, а не просто пробой подвески или удар задним свесом о землю. Толщина стенок газового баллона в несколько раз толще, чем у бензобака, и даже облегченный баллон представляет собой алюминиевую или стальную капсулу, на которую многократно намотана стеклоткань, пропитанная синтетическими смолами. Единственное, что важно – его прочное и жесткое крепление в машине.


ДИЗЕЛЬНЫЙ РАКУРС

Говоря о переводе автомобиля на газ, мы обычно предполагаем двигатель, работающий на бензине. Однако газовым (метановым) оборудованием оснащают и дизели. Правда, поставить его на легковой внедорожник вряд ли удастся. Оборудование такого типа рассчитано на дизели тяжелых грузовиков. При этом существует два варианта перевода дизеля на газ. В первом случае двигатель просто дооборудуется газовой системой питания. Пуск происходит на солярке, холостые обороты тоже поддерживаются за счет нее, а вот дальнейшее увеличение оборотов происходит за счет впрыска газа непосредственно в цилиндры через комплект дополнительных форсунок. Как следствие – мощность мотора при работе на газе не только не падает, но и способна возрасти. При этом солярка все равно поступает в двигатель: метан не способен воспламеняться от сжатия, и требуется запальная доза дизельного топлива. Нехватка жидкого топлива на высоких оборотах сказывается на охлаждении форсунок. Во всем остальном система газоподачи тут идентична бензиновым двигателям. В другом варианте дизельный двигатель полностью конвертируют в газовый, уменьшая степень сжатия и устанавливая искровую систему зажигания. Мотор навсегда перестает работать на солярке, а в качестве резервного топлива используется бензин.


Итоги

Строго говоря, нет никакой принципиальной разницы между установкой газобаллонного оборудования на внедорожник, легковушку или, скажем, грузовик. Все четырехтактные двигатели внутреннего сгорания построены на одном принципе работы. Важно лишь подобрать адекватную модель оборудования. В первую очередь это касается редуктора. Для владельцев внедорожников ситуация несколько усложняется тем, что на рынке предложение всегда реагирует на спрос, а газовое оборудование, как показывают маркетинговые исследования, наиболее востребовано владельцами машин с двигателями объемом 1,5–2 л и мощностью до 150–170 л.с. Предложение же по «большим» моторам крайне ограничено, причем найти метановое оборудование для них практически невозможно. Владельцам внедорожников с небольшими двигателями легче, но широкий выбор заставляет задуматься о том, что же все-таки установить. У метана более чем привлекательная цена, но даже простейшее оборудование стоит столько, что самые продвинутые пропановые системы покажутся бюджетными. К тому же скудная география заправок и серьезное снижение полезной грузоподъемности… Впрочем, проблема размещения баллонов актуальна для любого из газовых видов топлива, равно как и снижение мощности двигателя. Посему очевидно, что для спорта газ не годится. Что же до всех остальных, то надо сразу понять и принять, что газ – это компромисс. К тому же при нехватке мощности на бездорожье всегда можно перейти на бензин…

Критерии истины

Чтобы понять, как изменяется поведение автомобиля после перехода на газ, мы взяли на тест две машины, представляющие две крайние ступени эволюции газовых систем. Одна – метановый УАЗ с карбюраторным УМЗ 417 и механической системой подачи газа первого поколения. Единственный прибор в данной системе, работающий от электричества – переключатель видов топлива. Другая – пропановая « Нива », оснащенная электронным впрыском четвертого поколения с электромагнитными форсунками, способными работать как с нефтяным, так и природным газом на моторах практически любого объема благодаря сменным жиклерам. Форсунками управляет газовый процессор, пересчитывающий сигналы штатного электронного блока управления и кислородного датчика и определяющий степень и длительность открытия газовых форсунок.

В основном нас интересовало практическое выражение разницы в мощности двигателя при работе на бензине и газе. Чтобы почувствовать эту разницу, мы замерили максимальную скорость и эластичность двигателя двух автомобилей в обоих режимах. Стоит оговориться: результаты наших испытаний дают лишь приблизительную картину проявления свойств газобаллонного оборудования. В каждом конкретном случае динамометрические показатели работы автомобиля на разных видах топлива будут отличаться в зависимости от настроек системы и состояния оборудования. В последнем мы убедились, едва начали тест. У обеих машин оказались технические недостатки одного свойства. УАЗ ездит только на метане, и его карбюратор забыл «вкус» бензина (ради чистоты эксперимента был куплен и установлен новенький К-151), а « Нива », напротив, щеголяет очень умным, самонастраивающимся инжектором, газовый процессор которого пересчитывает под свои нужды сигналы бензинового.

Прежде чем устанавливать измерительную аппаратуру и выезжать на дорогу, мы взвесили машины. То, что масса возросла за счет задней части (где и расположены баллоны), никого не удивило. Однако легкая емкость с пропан-бутаном принципиально не повлияла на развесовку. На переднюю ось пустого автомобиля все равно приходится на 100 с лишним килограммов больше, чем на заднюю. У УАЗа ситуация обратная – на заднюю ось приходится почти на 150 кг больше. Для езды по бездорожью порожняком – это хорошо, но грузоподъемность машины сильно пострадала.

Если с замером максимальной скорости все оказалось просто, то для теста на эластичность двигателя была выбрана следующая методика. УАЗ должен был разгоняться на четвертой передаче с 40 до 80 км/ч, а « Нива », соответственно, на четвертой с 60 до 100 км/ч. Измерялись время, за которое автомобили набирали заданную скорость, и расстояние, которое они за это время проезжали.

Начав с УАЗа, мы ожидали потери мощности, но не настолько. Кроме того, удивил сам характер работы двигателя на газе и огромный разброс в результатах от заезда к заезду. Среднеарифметический показатель эластичности оказался меньше бензинового в 1,8 раза! Да и по максимальной скорости разница между метаном и бензином оказалась несколько больше ожидаемой. Проанализировав ситуацию, мы решили, что причину «плохого поведения» следует искать в газовом редукторе. Установленное оборудование очень старо и, вероятнее всего, с возрастом мембрана редуктора просто потеряла эластичность. Зато работа УАЗа на бензине не расстроила и не удивила. Разница в пробегах не превысила 30 метров, а «максималка» оказалась близка к паспортным значениям. Что же касается «Нивы», то автомобиль проявил себя вполне предсказуемо, продемонстрировав в серии заездов совсем небольшой разброс. При этом показатели работы на бензине превзошли газовые, но незначительно. Правда, значения максимальной скорости до паспортных так и не дотянули.


Андрей БОРЗУНОВ
Владелец УАЗа

НЕТ ПРОБЛЕМ С ХОЛОДНЫМ ПУСКОМ

На этой машине стоит простейшая газовая система. Пробег ее неизвестен, так как она успела поработать на нескольких автомобилях. УАЗ – пятая машина, на которую установлен данный комплект. Вещь кондовая и неубиваемая, никаких проблем не доставляла. Метановые баллоны (у меня их пять штук приблизительно по 33 литра) очень удачного диаметра – помещаются под задним сиденьем, в отличие от пропановых, которым место только в багажнике. Устанавливал все сам, методом проб и ошибок. Головку блока прошлифовал под 98-й бензин и перешел на метан окончательно и бесповоротно.

На бездорожье действительно тяги маловато, но на дачу пролезть хватает. Динамика на трассе волнует мало, главное – достигнута цель получить дешевый газ и платить за топливо минимально. Судите сами: заправить пять баллонов, приблизительно 30 кубов, по 7 рублей за куб, стоит 210 рублей (это в Москве, а на периферии дешевле). Запас хода на одной заправке – 250 километров минимум. Получается, что один километр стоит 80–90 копеек. И еще – в отличие от пропана, на метане у меня не было проблем с холодным пуском.

Первый газовый двигатель внутреннего сгорания был разработан немецким изобретателем Н. Отто. Принцип его работы заключался в том, что горючая смесь предварительно подвергалась сильному сжатию в верхней точке положения поршня. На создание экономичного двигателя, КПД которого достигал 15 %, изобретателю потребовалось около 15 лет, он получил название четырехтактного, поскольку рабочий цикл в нем протекал за четыре хода поршня.

Содержание статьи:

Газовый двигатель внутреннего сгорания – общее описание агрегата

Современные двигатели такого рода работают на природном и попутном газах, а также на сжиженном пропан-бутане, доменном газе и других. Преимущество таких двигателей заключается в меньшем износе основных узлов и деталей, что достигается путем создания качественной горючей смеси и ее эффективного сжигания. К тому же, в выхлопах практически отсутствуют вредные примеси.

КПД современных двигателей на таком топливе достигает порядка 42 %. Наиболее широко они применяются в газовой и нефтяной промышленности в качестве приводных устройств на газоперекачивающих установках. В последнее время перестали быть новинкой такие агрегаты и в автомобиле.

В отличие от них первый двигатель Отто был достаточно низкооборотным и обладал большой массой. При увеличении оборотов вала до 180 об/мин происходили перебои в его работе, а также ускоренный износ золотника. В качестве бака для хранения газа использовался большой резервуар, поэтому установка его на автомобили была попросту невозможной, однако его стали широко применять на различных заводах и фабриках.

Система питания газовых двигателей и общая схема устройства

Система питания газовых двигателей внутреннего сгорания, которая устанавливается на автомобилях – это дозирующая система, позволяющая использовать вместо бензина сжиженный газ. В ее комплект входят:

  • топливный баллон, который может иметь различную форму;
  • переключатель вида топлива, вмонтированный в салон автомобиля;
  • редуктор-испаритель, который предназначен для подогрева и испарения сжиженного топлива;
  • газовый клапан (электромагнитный), перекрывающий подачу топлива во время стоянки автомобиля;
  • электромагнитный бензиновый клапан или эмулятор форсунок, служащий для перекрытия подачи бензина во время использования газа;
  • заправочное устройство (выносное);
  • мультиклапан, который предотвращает утечку газа.

Принцип работы газового двигателя

Работает такое оборудование практически так же, как и бензиновое. Вначале сжиженный газ по топливной магистрали поступает в клапан-фильтр, где проходит предварительную очистку от различных взвесей и смол. Далее очищенный газ поступает в редуктор-испаритель, в котором его давление понижается до 1 атмосферы, после чего через дозатор подается в смеситель.

В оборудовании для инжекторных двигателей не применяется бензиновый клапан, вместо него устанавливается эмулятор форсунок.

Газовый двигатель своими руками – реально ли это?

В настоящее время на автомобилях применяются две схемы подключения оборудования:

  • классическая – газ подается непосредственно в карбюратор или инжектор;
  • последовательная – топливо поступает в форсунки, которые установлены параллельно с бензиновыми.

Классическая схема считается менее затратной, отличается простотой установки, но имеет существенный недостаток. При переключении режимов образуется смесь низкого качества, в результате чего двигатель быстро изнашивается. На сегодняшний день последовательная система хоть и является более дорогостоящей, но отличается более качественной подачей газа.

Основные достоинства применения такого оборудования:

  1. Возможность легко создать газовый двигатель своими руками, то есть смонтировать установку на автомобиле самостоятельно.
  2. Низкая стоимость топлива.
  3. Высокое октановое число.
  4. Отсутствие вредных выбросов.
  5. Более качественная работа двигателя.
  6. Благодаря применению газа значительно увеличивается ресурс двигателя.

Недостатки:

  1. Снижение динамики разгона автомобиля.
  2. Существенно возрастает нагрузка на клапаны газораспределительного механизма.
  3. Все оборудование занимает слишком много места.
  4. Сложности с использованием оборудования в зимнее время.

Газобаллонное оборудование (ГБО), которое дополнительно может встраиваться своими руками в уже существующую топливную систему автомобиля, приобретается на рынке, каждой модели двигателя соответствует своя модель ГБО. Заправочный баллон с комплектующими (клапан и испаритель) крепится в какой-нибудь нише, чаще всего это место для «запаски».

Следом подсоединяется выносное заправочное устройство, отверстие которого будет выходить на внешнюю сторону кузова. А затем на двигателе устанавливаются клапаны против утечки газа, для перекрывания бензина при включении газа.

А в салоне автомобиля располагается переключатель бензин-газ. Если вы сомневаетесь в своих знания о традиционном устройстве мотора, то не рискуйте к нему присоединять ГБО, лучше обратитесь к специалистам.

ГАЗ (Горьковский автомобильный завод) — всем известный российский автопроизводитель. Популярен благодаря созданию таких автомобилей, как Волга, Газель, Чайка, Победа и других знаменитых в прошлом и настоящем авто. В текущее время ГАЗ это производитель коммерческой техники, из-за падения спроса, сборка легковых автомобилей была прекращена. Тем не менее, этих автомобилей до сих пор много на улицах наших с вами городом и объяснить эту массовость достаточно легко — дешевизна. Запчасти на ГАЗ стоят совсем не дорого, автомобили ремонтируются на каждом углу, а цена на сам авто крайне мала. Для любителей тюнинга, ГАЗ подходит как нельзя лучше, двигатели имеют приличный рабочий объем и мощность, неплохо поддаются турбированию и цена на все это остается в рамках приличия.

Двигатели ГАЗ на легковых автомобилях — это довольно простые рядные четырехцилиндровые моторы самых различных моделей и модификаций, преимущественно, производства, ЗМЗ и УМЗ. На топовых автомобилях ГАЗ использовались 6 цилиндровые двигатели и V8. Кроме того, применялись и двигатели иностранного производства такие, как рядная четверка 3RZ и V6 5VZ , Rover T16, а также Chrysler EDZ. Вместе с бензиновыми двигателями, на ГАЗ устанавливались и дизельные двигатели: рядные 4-цилиндровые ГАЗ-560 Штайер, а также производства ЯМЗ, ММЗ, Cummins, Toyota 2L-T.
Двигатели ГАЗ на грузовых автомобилях — это бензиновые V8 ЗМЗ, рядные турбированные 4-цилиндровые ММЗ и ЯМЗ, а на старых версиях ГАЗ, двигатели применялись 6-цилиндровые, с рядной конфигурацией.

На WikiMotors собрана и продолжает собираться информационная база по моторам Горьковского автозавода, здесь вы найдете все модели и маркировки двигателей ГАЗ, какие и куда ставились, их объемы, технические характеристики, неисправности (троит, глохнет и т.д.) и ремонт своими руками. А также ресурс, устройство, вес, масло в двигатель ГАЗ, сроки замены, сколько лить и прочее.
Вместе с этим, особое внимание уделено тюнингу ГАЗ: как правильно дорабатывать мотор в атмосферном варианте, а также установка компрессора и турбины.
Прочитав информацию на Викимоторс, вы решите, какой двигатель ГАЗ стоит купить, а какой доставит головную боль, тюнинговать стандартный силовой агрегат или выбрать другой для свапа и многое другое.

Ввиду повсеместных усилий, направленных на снижение выбросов СO 2 , природный газ приобретает все большую важность в ка­честве альтернативного вида топлива для автомобилей. Сжатый природный газ (СПГ), который не следует путать со (СНГ), в основном состоит из метана. Сжиженный нефтяной газ в основ­ном состоит из пропана и бутана. Работа двигателя на сжатом природном газе несколько отличается. Вот о том как происходит работа двигателя на природном газе, мы и поговорим в этой статье.

Содержание

Применение сжатого природного газа на автомобилях

По сравнению с бензином, при сгорании сжатого природного газа образуется приблизительно на 25% меньше СO 2 . Таким образом, сжатый природный газ дает наи­меньшее количество выбросов СO 2 из всех видов ископаемого топлива. Применение в качестве топлива биогаза позволит в еще большей степени снизить глобальные вы­бросы парниковых газов. В связи с более низким содержанием СO 2 в отработавших га­зах, транспортный налог на автомобили, ра­ботающие на сжатом природном газе, во многих странах снижен.

Тем временем различные производители начали предлагать варианты автомобилей, оборудованных для работы на сжатом при­родном газе. При этом баллоны для СПГ большего объема размещаются более удобно и эффективно, без потерь полезного объема багажного отделения, практически неизбеж­ных при доделке автомобилей.

Последнюю информацию о количестве автомобилей, которые могут работать на СПГ, и сети заправочных станций сжатого природного газа в Гер­мании можно найти в Интернете. Такие автомобили, как правило, явля­ются двухтопливными, т.е. водитель может переключаться с бензина на газ и обратно. Существуют также варианты, получившие название «Monovalent plus», в которых дви­гатель оптимизирован для работы на природ­ном газе с целью как можно более полного использования его преимуществ по сравне­нию с бензином (более высокая стойкость к детонации, меньшее количество выбросов СO 2 и токсичных веществ). На автомобилях варианта «Monovalent plus», тем не менее, предусмотрен небольшой бензобак (<15 л), чтобы можно было продолжать движение на бензине в случае отсутствия поблизости стан­ции заправки природным газом.

Конструкция автомобиля, работающего на сжатом природном газе

Хранение природного газа в автомобиле

Природный газ может храниться в жидком состоянии при температуре -162°С (сжижен­ный природный газ) или в сжатом виде при давлении до 200 бар (сжатый природный газ, СПГ). Ввиду больших затрат, связанных с хранением природного газа в жидком со­стоянии, стандартным способом стало хра­нение в сжатом виде при давлении 200 бар. Несмотря на столь высокое давление, плот­ность хранения энергии у природного газа значительно меньше, чем у бензина. Для хра­нения количества природного газа с таким же энергосодержанием, как у бензина, требуется бак в четыре раза большего объема.

Компоненты систем на сжатом природном газе

Автомобили, способные работать на при­родном газе, практически исключительно оборудованы двигателями с искровым зажи­ганием. Дополнительные компоненты вклю­чают следующее (см. рис. «Работа двигателя на природном газе или бензине» ):

  • Заправочная горловина;
  • Баллон для природного газа;
  • Запорные клапаны высокого давления (на баллоне для природного газа);
  • Регулятор давления природного газа с дат­чиком высокого давления;
  • Газовая рампа с газовыми форсунками;
  • Комбинированный датчик давления и тем­пературы.

Принцип действия двигателя на природном газе

Всасываемый двигателем воздух проходит через датчик массового расхода воздуха и дроссельную заслонку с электронной систе­мой управления и поступает во впускной тру­бопровод. Отсюда он подается в камеру сго­рания через впускные клапаны (см. рис.). Природный газ, находящийся в баллоне под давлением 200 бар, проходит через запорный клапан высокого давления на баллоне и по­ступает в модуль регулирования давления, который снижает давление до постоянного рабочего давления, составляющего прибли­зительно 7 бар (абсолютное давление). Затем по гибкому шлангу низкого давления газ поступает в газовую рампу, откуда он подается к газовым форсункам.

Системы управления двигателем для двух­топливных автомобилей

В настоящее время находят применение си­стемы как с двумя блоками управления (по одному блоку управления для работы на бен­зине и газе), так и с одним общим блоком управления. На некоторых двухтопливных ав­томобилях водитель может выбирать работу на бензине или газе при помощи переключателя, однако на большинстве моделей это пере­ключение осуществляется автоматически, т.е. двигатель работает на газе до тех пор, пока газ не заканчивается. В этом случае происходит автоматическое переключение на бензин.

Датчик высокой температуры, установлен­ный на модуле регулирования давления, вы­дает в систему управления двигателем данные о текущем запасе газа в баллоне, а также ис­пользуется при выполнении диагностики. Ком­бинированный датчик давления и температуры, установленный на газовой рампе, позволяет си­стеме управления двигателем корректировать момент и продолжительность впрыска газа та­ким образом, чтобы состав смеси во впускном трубопроводе оставался стехиометрическим, несмотря на колебания плотности газа. Система управления двигателем также включает меха­низм адаптации к изменениям свойств газа.

Остальные датчики и исполнительные устройства системы управления двигателем в основном идентичны используемым в бен­зиновом двигателе.

Смесеобразование в двигателях на сжатом природном газе

В большинстве двигателей при работе на при­родном газе, так же как при работе на бензине, газ подается во впускной трубопровод. Из «об­щей топливной рампы низкого давления» газ подается к форсункам, которые в импульсном режиме осуществляют впрыск природного газа во впускной трубопровод. При этом улуч­шаются условия смесеобразования, поскольку подача полностью газообразного топлива исключает возможность его конденсации на стенках впускного трубопровода и отложения на них пленки топлива, как это может проис­ходить при работе на бензине. Выброс токсич­ных компонентов с отработавшими газами при использовании сжатого природного газа снижается, особенно при работе двигателя в режиме прогрева.

В настоящее время на рынке предлага­ются двухтопливные автомобили и варианты «Monovalent plus». Двухтопливные автомо­били могут работать как на природном газе, так и на бензине, однако при работе на природ­ном газе эффективная мощность двигателя снижается приблизительно на 10-15%. Это связано с более низким значением мощности на единицу рабочего объема двигателя, что можно объяснить вытеснением всасываемого воздуха, нагнетаемым природным газом.

Двигатели автомобилей могут быть опти­мизированы специально для работы на при­родном газе. Чрезвычайно высокая стойкость природного газа к детонации (октановое число по исследовательскому методу (RON) до 130) дает возможность увеличить степень сжатия и делает природный газ идеальным топливом для двигателей с наддувом. Одновременное уменьшение рабочего объема цилиндров по­вышает к.п.д. двигателя, благодаря дополни­тельному снижению сопротивления и потерь на трение.

Выбросы отработавших газов

При работе двигателя на природном газе коли­чество выбросов СO 2 снижается, по сравнению с работой на бензине, приблизительно на 25%. Причина заключается в более благоприятном соотношении водород/углерод (отношение Н/С) — почти 4:1 (для бензина приблизительно 2:1). Это приводит к образованию во время сгорания природного газа большего количе­ства воды и меньшего количества СO 2 .

Кроме практически полного отсутствия в вы­бросах твердых частиц, в сочетании с трехком­понентным каталитическим нейтрализатором, двигатель, работающий на природном газе, производит очень небольшие количества ток­сичных веществ (NO x , СО и НС). Каталитический нейтрализатор для двигателя, работающего на природном газе, содержит большее количество благородного металла, что необходимо для улуч­шения преобразования углеводородов, состоя­щих в основном из химически стабильного ме­тана, и компенсации более высокой температуры «поджига» для природного газа (минимальная температура каталитического нейтрализатора, при которой начинается преобразование токсич­ных веществ). Следует указать, что, в отличие от Европы, в США метан классифицируется как нетоксичное вещество и, следовательно, не рас­сматривается американским законодательством в области ограничения токсичности отработав­ших газов, как загрязняющее вещество.

Автомобили, работающие на природном газе, отвечают высоким требованиям в отно­шении предельного содержания токсичных веществ в отработавших газах, особенно это относится к автобусам, которые должны отвечать более строгим требованиям EEV (усо­вершенствованный экологически чистый автомобиль). Использование природного газа также дает значительные преимущества по сравнению с бензиновыми и дизельными двигателями в отношении выбросов загряз­няющих веществ, не регламентируемых за­конодательством. Некоторые из них являются канцерогенами, а также способствуют образованию смога и кислотных дождей.

Компоненты двигателей на сжатом природном газе

Для обеспечения двигателя внутреннего сгора­ния газообразным топливом необходимо до­зировать через газовые форсунки значительно большие объемы газа, чем объемы бензина в обычном бензиновом двигателе. Это условие предъявляет особые требования к конструкции газовой форсунки, которая должна быть адап­тирована к этим высоким значениям объемного расхода газа посредством увеличения проход­ных сечений. Кроме того, высокие скорости по­тока газа требуют специальной формы каналов с целью снижения потерь давления в форсунке.

В двигателях с интенсивным наддувом дав­ление во впускном трубопроводе может воз­растать до 2,5 бар (абсолютное давление). Для снижения влияния давления во впускном трубо­проводе на массовый расход необходимо, чтобы давление перед соплом в самом узком месте (точка дросселирования) было, как минимум, в два раза больше максимального давления во впускном трубопроводе (давление после сопла). При этом скорость газового потока равна скоро­сти звука, независимо от абсолютного давления после сопла. Отсюда следует, что переменное давление во впускном трубопроводе не ока­зывает влияния на массовый расход. С учетом возможных потерь давления перед точкой дрос­селирования минимальное рабочее давление (абсолютное) должно составлять 7 бар.

Конструкция и принцип действия газовой форсунки

Якорь электромагнита (см. рис.) находится в гильзе, служащей в качестве направляющей. Топливо протекает через канал внутри якоря. На выходном конце этого канала имеется эласто­мерное уплотнение. Это уплотнение прилегает к седлу клапана и изолирует подачу топлива от впускного трубопровода. При подаче питания катушка электромагнита создает магнитную силу, необходимую для подъема якоря элек­тромагнита и открытия дозирующего сечения (точка дросселирования в седле клапана). Когда катушка обесточена, пружина клапана удержи­вает форсунку в закрытом положении.

Оптимизированная геометрия газовой форсунки

Благодаря оптимизированному маршруту потока, потери давления перед точкой дрос­селирования сведены к минимуму, что обе­спечивает максимально возможный массовый расход. Кроме того, самое узкое сечение и, следовательно, точка дросселирования нахо­дится на выходном конце, после уплотнения. Здесь скорость потока близка к скорости звука, поэтому в физическом смысле клапан пред­ставляет собой практически идеальное сопло.

Геометрия уплотнений форсунки для природного газа

Газовая форсунка установлена с эластомер­ным уплотнением и в отношении геометрии уплотнения седла подобна запорным клапа­нам для пневматических систем. Эластомер­ный материал улучшает герметичность уплот­нения металлических игольчатых клапанов.

Эластомерный материал также обладает демпфирующими свойствами и предотвра­щает «дребезг», т.е. повторные нежелательные колебания якоря электромагнита вовремя за­крытия, что повышает точность дозирования.